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INTRODUOCTION.

A QuATERNION ¢ adequately represents a point @ to which a determinate weight 1s
attributed, and, conversely, when the point and its weight are given, the quaternion
is defined without ambiguity. This is evident from the identity

— V_q_.> A
g_<1+Squ..........(),
in which Sq is regarded as a weight placed at the extremity of the vector
_ Vg B
0Q = Sgt ot (B),

drawn from any assumed origin 0. It is sometimes convenient to employ capitals Q
concurrently with italics ¢ to represent the same point, it being understood that
=39 =1 B (0) 8
@=g, =1+ (©)
Thus @ represents the point @ affected with a wunit weight. The point 0 may be
called the scalar point, for we have
o=1 . . . . . . . . . . . (D)

In order to develop the method, it becomes necessary to employ certain special
symbols. With one exception these are found in Art. 365 of ‘Hamilton’s Elements
of Quaternions,” though in quite a different connection. We write

(@, 6) = 0Sa — aSb, [a,b]=V.VaVb . . . . . . (E);
and in particular for points of unit weight, these become
(A,B)==B—4, [A,B]=V.VAVB=V.Va.(B—14) . . . (F).

Thus (ad) is the product of the weights SaSb into the vector connecting the points,
and [ab] is the product of the weights into the moment of the vector connecting the
points with respect to the scalar point. The two functions (ab) and [ab] completely
define the line ab.
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Again HAMILTON writes
[a,b,¢]=(a,b,¢) —[D,c]Sa —[¢,a]Sb—[a,b]Sc; (@,b,¢) =S[a,b,c] =SVaVbVe. (G);

or if we replace @, b, ¢ by (1 + «)Sa, (1 + 8)Sb, (1 + y)Se, where o, 8 and y are the |
vectors from the scalar point to three points a, b and ¢, we have

[A,B,¢] =Safy — V(By +ya +af); (a,B,¢c)=8aBy . . . (H).

Hence it appears that [a, b, ¢] is the symbol of the plane @, b, ¢; for

— V], b,c](a, b, ¢)™! is the reciprocal of the vector perpendicular from the scalar

point on that plane. Also (4, B, ©) is the sextupled volume of the tetrahedron oasc.
Again, HamivroN writes for four quaternions '

(abed) = S.albed) . . . . . . . . . (D;

and in terms of the vectors this is seen to be the products of the weights into the
sextupled volume of the pyramid (aBcD).

Other notations may ot course be employed for these five combinatorial functions
of two, three, or four quaternions or points, but IHamILToN’s use of the brackets seems
to be quite satisfactory.

In the same article HAMILTON gives two most useful identities connecting any five
quaternions. These are

a(bede) + b(cdea) + c(deab) + d(eabe) + e(abed) =0. . . . (J),
e(abed) = [bed]Sae — [acd]Sbe 4 [abd]|Sce — [abc]Sde . . . (K),

and

which enable us to express any point in terms of any four given points, or in terms
of any four given planes.
The equation of a plane may be written in the form

Slg:O e e e e e e e e e (L);

and thus /, any quaternion whatever, may be regarded as the symbol of a plane as
well as of a point.

On the whole, it seems most convenient to take as the auxiliary quadric the sphere
of unit radius

S.P=0 . . . . . .. ...,

whose centre is the scalar point. With this convention the plane Slg = 0 is the
polar of the point / with respect to the auxiliary quadric; or the plane is the
reciprocal of the point I Thus the principle of duality occupies a prominent
position,

The formulee of reciprocation

([abel; [abd]) = [ab] (abed) ; [ [abe] ; [abd] ] = — (ab) (abed). . . (N)

connecting any four quaternions are worthy of notice, and are easily proved by
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replacing the quaternions by 14, 148, 14y, and 1 4 & respectively. In
complicated relations it may be safer to separate the quaternions as in these formulae
by semi-colons, but generally the commas or semi-colons may be omitted without
causing any ambiguity.

These new interpretations are not in the least inconsistent with any principle of
the calculus of quaternions. We are still at liberty to regard a quaternion as the
separable sum of a vector and a scalar, or as the ratio or product of two vectors, or
as an operator, as well as a symbol of a point or of a plane.

In particular, in addition to HamirroN’s definition of a vector as a right line of
given direction and of given magnitude, and in addition to his subsequent interpre-
tations of a vector as the ratio or product of two mutually rectangular vectors, or as
a versor, we may now consider a vector as denoting the point at infinity in its
direction, or the plane through the centre of reciprocation. For the vector oQ of
equation (B) becomes infinitely long if Sg = 0, and the plane Slg = 0 passes through
the scalar point if 8/ = 0. We may also observe that the difference of two unit
points A — B is the vector from one point B to the other A, and this again is in
agreement with the opening sections of the “Lectures.”

Additional illustrations and examples may be found in a paper on “The Intelple-
tation of a Quaternion as a Point-symbol,” ‘Trans. Roy. Irish Acad., vol. 32,
pp. 1-16.

The only other symbols peculiar to this method are the symbols for quaternion
arrays. The five functions (ab), [ab], [abc], (abc), and (abed) are particular cases of
arrays, being, in fact, arrays of one row. In general the array of m rows and n

columns
(ool Ay Uy o oo Oy )

by, by by ... D,

Py P2 Ps - - o P ‘
may be defined as a function of mn quaternion cohstituents, which vanishes if, and
only if, the groups of the constituents composing the rows were connected by linear
relations with the same set of scalar multipliers. In other words, the array vanishes
if scalars ¢, ¢, . . . #, can be found to satisfy the m equations

ey F tay 4+ oo b, =0,

b, + thy + ... D, =0,

b+ ps + oo+ Lp,=0.
The expansion of arrays is considered in a paper on * Quaternion Arrays,” ¢Trans.

Roy. Irish Acad.,” vol. 32, pp. 17-30.
VOL. CCIL.—A, 2 @
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SECTION 1.

FUNDAMENTAL GEOMETRICAL PROPERTIES OF A LiINEAR QUATERNION FUNCTION.

Art. Page
1. Definition of a linear quaternion function . . . . . . . . . . . . . . . 226
2. The general linear transformation effected by a linear function . . . . . . . . 226
3. Specification of a function by four quaternions or five points and their deriveds. . . 227
4. The transformation of planes effected by the inverse of the conjugate function . . . 227
5. Geometrical interpretation of HamirroN’s method of inversion . . .oLo227
6. Geometrical illustration of the relations connecting HAMILTONS auxﬂmy functlons . 228
7. The united points of a linear transformation. . . e e o229
8. Relations connecting the united points of a function f with those of its conjugate /' . 230
9. Introduction of the functions fo=% (f+/ ) f,=s(-/). . - . . . . . . . . 231

10. S¢fog=0 and S¢f,p=0 represent the general quadric surface and the general linear

complex. . . . e .. 231
11. The pole of a plane Sgb O to the quadrlc is fo=10; and thc pomt of concourse of lines
of the complex in the plane is /,-%0. . . . . . Coe e 232
12. The united points of f, form a quadrilateral on the sphele of 1eolprocatlon . 232
1. The quaternion equation
Ae+a=m+sm - oo (D)

may be regarded as a definition of the nature of a linear quaternion function f, the
quaternions p and ¢ being perfectly arbitrary. As a corollary, if @ is any scalar,

and on resolving f¢ in terms of any four arbitrary quaternions a,, a,, ag, «, we
must have an expression of the form

fq = a,Sb,q + a,Sb,9 + a;5b,g +aSbyg . . . . o . (3),

because the coefficients of the four quaternions ¢ must be scalar and distributive
functions of q. Sixteen constants enter into the composition of the function f; being
four for each of the quaternions b.

2. When a quaternion is regarded as the symbol of a point, the operation of the
funetion f produces a linear transformation of the most general kind.

The equations

Slza 4 yb) = xfa + yfb;  flxa 4 yb+ zc) = afu + yfb + 2fc . . (4),

show that the right line a, b is converted into the right line fa, f0, and the plane
containing three points «, b, ¢ into the plane containing their correspondents, fu, b
and fc.

The homographic character of the transformation is also clearly exhibited.
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3. In order to specify a function of this kind it is necessary to know the quater-
nions o/, V', ¢/, d’ into which any set of four unconnected quaternions, a, b, ¢, d, are
converted. Thus, from the identical relation

q (@bed) + a(bedq) + b(edga) 4 ¢(dqab) 4+ d(qabe) =0 . . . (5),

connecting one arbitrary quaternion with the four given quaternions, is deduced the
equation

Jq(abed) + o' (bedg) 4+ b (edga) + ¢/ (dgab) + d' (qabe) =0 . . . (6),

which determines the result of operating by f on q.

When we are merely concerned with the geometrical transformation of points, the
absolute magnitudes® of the representative quaternions cease to be of importance,
and the function

Jfq = xA’(Bopq) + yB' (cDgA) + 2 ¢/ (DgaB) 4w/ (ganc). . . . (7),

which involves four arbitrary scalars, converts the four points A, B, ¢, D into four
others, A’, 8, ¢/, 'D.  Given a fifth point & and its correspondent ¥, the four scalars
are determinate to a common factor, and subject to a scalar multiplier, the function
which produces the transformation is

f}] — A/(BCDQ) . @}_,_CJR/]?:) + B (CDQA) . @LE_,A/) + d (DQAB) . _(D’EiAE)

(BCDE) (cpEA) (DEAB)
+D’(qABC).£%§§gA). R ) 8

It is only necessary to replace ¢ by & in order to verify this result.

4. A linear quatermion function, f, betng reqarded as effecting a transformation of
ponts, the nverse of its conjugate f'=1 produces the corresponding tangential (rans-
Sormation.

For any two quaternions, p and ¢,

Spg =Spf~tq =S py =8py itq =fr,p,=""rp . . . (9).

Hence any plane Spg = 0, in which the quaternion ¢ represents the current point,
transforms into the plane Sp,’ = 0, and the proposition is proved.

Thus, when symbols of points (¢) are transformed by the operation of f, symbols of
planes (p), or of points reciprocal to the planes, are transformed by the operation
of /'L,

5. HamruroN’s beautiful method of inversion of a linear quaternion function
receives a geometrical interpretation from the results of the last article.

¥ In accordance with the notation proposed (¢Trans. Roy. Irish Acad.,’ vol. 32, p. 2), capital letters
are used in this article concurrently with small letters to denote the same points, but the weights for the
capital symbols are unity ; thus ¢=QSq=(1+40Q) Sy.

262
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The symbol of the plane containing three points «, 0, ¢, may be written in the
form

p=la,bcl . . . . . . . . . . (10);

and on transformation this becomes
np, == [ fo, [0, fe] = I [abe] = F'p = F'f'p, . . . . . (L1),

where 7 is a certain scalar and where I is an auxiliary function.

In fact, the first equation sums up the last article; in the second a new function
F7 15 introduced, and in the fourth equation (9) is utilized.
Since p, is quite arbitrary (11) may be replaced by the symbolical equations

n=Ff;, F=nft =00 n=fF . . . . (12),

an arbitrary quaternion being understood as the subject of the operations.
" Moreover, because

nSpq = SpF'f'q = Skpf'q=9q¢fFp . . . . . . (13),

where p and ¢ are arbitrary quaternions and where /7 is the conjugate of 7, it
appears that
n=fF; F=unf"; f=nF Y n=F . . . . . . (14)

And for any three arbitrary quaternions

Flabe] = [faf'bf'e] . . . . . . . . . (15)

as appears from symmetry, or, anew geometrically, by considering a point as the
intersection of three planes.
Operating on the last equation by Sf’d we find, since n = fFF = f'f",

n(abed) = (f'af’bf'ef'd) =(fafbfefd). . . . . . (16).

The fact that (abed) is a combinatorial function of «, b, ¢ and d proves that n is an
invariant, or that it is quite independent of any particular set of quaternions, e, b, ¢, d.
This invariance is, however, established by the form of the equations (12) and (14).

6. Replacing f'by f; = f—t, where ¢ is an arbitrary scalar, IIamiLron denotes by
Iy and n, the auxiliary function and the invariant which bear the same relations to
Ji that F and n bear to f.

By (15) and (16), ¥, and n, are of the forms

Fi=F—tG+vH—-¢ . . . . . . . . . (17),
where ¢f and I are new auxiliary functions ; and
n=mn—tn " =" .0 0 0 0 o (18),

where #n/, n” and #’” are new invariants.
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He then equates the coeflicients of the arbitrary scalar ¢ in the symbolical equation

w=FE=Kf . . . . . . . . . (19),
aud obtains the symbolical equations
n=Fn=F+G(n =G+ H[»"=H+f . . . (20),
which will be found to be of great importance in the 7
geometrical theory. PN
. I - ° ey 3 : /I o\
. In virtue of (l‘(‘)), all these functions are commutative, Faht vy
in order of operation. / ‘:fh’;; N\,
These equations establish certain collineations which //’ § "\
are illustrated in the annexed figure. 7 /’7\
. /. \
From the relations (20) Hamirron deduces qu-’/ S fHg

H=3"—Ff; G=o' —a"f4+f7; F=n/ —a'f+2"f>—=f. . (21),
and the symbolic quartic satisfied by f |
Sr=w" ) =000 (f—t) (f—&) (f—t) (f—1t)=0 . (22),
if ¢, t,, 15, t, are the roots of the quartic
=" B+ =t =0 . . . . .. (23),

or the latent roots of the function f.

Tt appears by (12) and (14) that exactly similar equations are valid for the con-
jugate function f7, it being only necessary to replace ¥, G' and H by their conjugates
F', G and H’, as the invariants n, #/, "’ and n”” are the same in both cases.

7. The united points of the transformation are represented by the quaternions
71> 95 ¢ and g, which satisfy the equations

f?iztﬂlif'{]z:tz%?f%:t3‘_733f(]4=t4~9’4~ S e (24)§

and they are determined by operating on an arbitrary quaternion by the function
obtained by omitting one factor of the second form of (22). In like manner by
omitting two or three factors of the same quartic, the equations of the lines joining
two, and of the planes through three, of the united points are obtained by operating
on a variable quaternion. Thus -

= (/=) (f=thr and g=(f=t) . . . . . (2)

are respectively the equation of the line through the points ¢, g, and of the plane
through the points ¢, ¢s, ;. These results are obvious when the arbitrarily variable
point is referred to the united points as points of reference, or when we write

r=wq bt @ gt wag - - - - - o - (26).
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8. The united points of a function and of its conjugate form reciprocal tetrohedra
with respect to the unit sphere Sq* = 0.
For when the roots are all unequal

t8¢ g1 =S¢y fgy =8¢, ¢y =1.5¢.9, =0 . . . . . (27),

if ¢'; ¢4, ¢'s and ¢', are the united points of the conjugate. Thus the points ¢, and
¢’y are conjugate with respect to the sphere.

Since the plane S¢’;¢ = 0 contains the points ¢y, ¢35, ¢4, the weights may be chosen
so that

L999594) o — [0:0:01]

= o= o] o= Tage] (28);
(01929594) 1 (92959:%1) ! )

gy = L1 , 0 7
T (959:19192) : (94919245)

r
1=

and these relations imply*

SS9y = 8959’y = 8¢sq's = 8q.q'y =1 e (29);
and from symmetry
[‘],2(]/%9,4‘] (750491 o 19909 _ 1" s] 2
=755 =TT Ys = s Y T T T v 30).
h (7"19'29'59"s) 1 (7'9937'49"1) : (¢'394919'2) 1 (‘]/4(1,1(1,2(]’3) (59)

To these relations may be added the quaternion identities

019+ 929y + 9's + Qs =4 = 9’1‘]1 + 9%+ ¢+ - . . . (31),
S+ 0.5¢; + ¢:5¢'s + 9.5¢y = 1 = ¢/ 3¢, + ¢559; + ¢s5¢s + ¢'Sq, . (32),

which are probably more elegant than important. The second shows that the centre
of the sphere is the centre of mass of the weights $¢,8¢", S¢,8¢'y, 89:5¢,, S¢,8¢,
placed at the vertices of either of the tetrahedra, and that the sum of their weights
is unity.

From these identities we deduce the vector equations

(19"1) +(9:9s) + (939'5) + (949's) = 0 = [0\ ] + [9o9s] + [050"<] + [0:0]  (33),

which express that equilibrating forces can be placed along the lines joining
corresponding vertices, or that any line which meets three of these lines meets the
fourth, or that the lines are generators of a quadric.t

* Writing gi=w; (14+a), ¢1=v"1 (1+a4), equations (29) give wyw’y (1+Sa;21)=1. Hence the
product of the weights wyw'y is the reciprocal of the product of the perpendiculars from the centre of the
sphere and from the point ¢; (or ¢';) on the opposite face of the tetrahedron ¢ig.g305 (or ¢'19's¢'s7')-
Observe that only the products ww'; have been assigned, not w; and «'; separately.

T In the notation of the last note (33) becomes wiw'y («'y — ay) = 2w Ve =0. The equilibrating
forces are proportional to the distances between the vertices divided by the products of perpendiculars
mentioned in the note cited.
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It is also possible to obtain relations connecting pairs of the points ((N), p. 224),

’ o v
sl =+ T gy = — BT g =4 )
nee] (919°59'54s) (0122 (1929544 L9175 (012:957:)

Ity — (7594 :
Qo) = — MM s oL (84),
(73 (019290) | (84)

from which we learn that
—1= (‘1192’]3’74‘) (@959 - - - . . . . (3D);

and we are at liberty to write separately on further selection of the weights (for the
products of the weights S¢,S¢’; alone have been assigned),

(19:0:7) = (1 ssds) = —1 . . . . . . (36),

with corresponding simplifications in the formulze.
When the function is self-conjugate, the tetrahedron of united points is self-

reciprocal to the unit sphere.
9. Introducing two new linear functions defined by the equations

S=htlo S =h=lo2fy=f+1 2 == . . . (37),
it is obvious that for any two quaternions, p and ¢,
Spfog = Sqfup; Spfa=—Sqfp . . . . . . (38),
=5 fi==f . . . . . . . . . (39),
and f; is self-conjugate, and £, is the negative of its conjugate.
10. The equation ' :
Sefeg=0 . . . . . . . . . . . (40)

is the general equation of a quadric surface, and

Sqfp=0. . . . . . . .. . . (41)

is that of a linear complex, p and ¢ being both variable points.

In fact (40) is the most general scalar ‘quadratic function homogeneous in ¢, and
the surface represented meets the arbitrary line ¢ = @ + tb in the points deter-
mined by the roots of the quadratic

Safyn 4 2uSafh + 2SbAb =0 . . . . . . . (42).

or symbolically

In like manner (41) is the most general scalar function linear in two quaternions
and combinatorial with respect to both, for by (38)

Safg=0 . . . . . . . . . . . (43)

whatever quaternion ¢ may be. It is therefore immaterial if we replace ¢ and p in
(41) by any other points on their line, provided the two points are not coincident, and
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the equation therefore imposes a single linear restriction on the line pg, and represents
a linear complex.

In terms of vectors, putting g =14 p, p=1+4 », and using the expression
given in the ‘ Elements’ (Art. 364, XII.) for a linear quaternion function, we have
Ji=rc¢+e+Sp+dp, flg=c+ ¢+ Bep+ ¢p;

Jog = eyt 6 +Bep+ dop, frg=¢, —Sep+Vyp ... (44)5

p=1¢0, 2¢g =€+ €, 2, =me—¢; =, -+ Vn, ¢ =P, — Vy,

where

and the equations of the quadric and linear complex assume well-known forms
ey + 28¢p + Sphp = 0, Se(w —p) +Vpm = 0 . . . (45).

L1l. The equation of the polar plane of a point « with respect to the quadric
(compare (42)) is
Sofee=0 . . . . . . . . . . (46),

and fia is the pole of this plane with respect to the unit sphere.
Thus fiye is the symbol of the polar plane of the point a.
With respect to the quadric the pole of the plane

Segb=0is p=j,"". . . . . . . . . (47),

and the reciprocal of the quadric has for its equation

Sefy,"lg=0 . . . . . . . . . . (48).
The lines of the complex through a given point « lie in the plane
Sefa=0 . . . . . . . . . . (49),
while the point of concourse of the lines in the plane
| Sgb=0is p=f~% . . . . . . . . (50),
and '
Sj)ﬁ*l,(] =0 . . . . . . . . .. (51)

is the equation of the reciprocal of the complex.

12. The nature of the united points of the function f is casily ascertained.

Since the function is the negative of its conjugate, its symbolic quartic (22)
must be of the form

S S, = 0,0 (= ) (/=8 =0 . . . . (52)
Jior = sipy fiph = =10 fipe = Sopo, [Pla = — 80y . .. (53),

And if

it follows in the first place (43) that the united points all lie on the unit sphere, and
in the second by (27) that
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Spipy = Sp,p’y = Sp/ypy = Sp'1py =0 T (54)-

Hence in this order p,p,pp’, is a quadrilateral situated on the unit sphere.
These results may be verified for the vector form (44). Actually solving

S+ w) =s(l +=»)=¢ — Sew + Vw,
we see that s = — Sem, sSyw = Sye,, and therefore
(s =n)m =€, — 7S¢, or (s — 9*)w = (s + 1) (e, — s7'Sne)),
so that operating by Se, the result is the quartic in s
st (ef— ) —(Sne,)*=0. . . . . . . (53);

and fora real function two roots of this quartic are always real and two are imaginary.
Two of the united points are consequently real (Art. 7) and two are imaginary.

SECTION II.

Tur CrASSIFICATION OF LiNEAR QUATERNION FuUNCTIONS,

Art. , Page
13. Table of types and auxiliary formule . . . . . . . . . . . . . . . . . 233
14. Standard forms . . . . . . . . o . . . . . . . . ... 934
15. Solution of the equation fy=p for functions of the first class . . . . . . . . . 235
16. Case of functions of the second class . . . . . . . . . . . . . . . . . 237
17. Functions of the third elass . . . . . . . . . . . . . . . . . . . . 238
18. Functions of the fourth class. . . . . . . . . ... . . . . . . . 238
19. Self-conjugate functions . . . . . . . . . . . . . . . . . . . . . 239
20. The classes of self-conjugate functions. . . . . . . . . . . . . . . . . 239
21. If a function converts a tetrahedron into its reciproeal, it is self-conjugative . . . . 240
22. Geometrical meaning of adding a scalar to a function . . . . . . . . . . . 241

13. Linear quaternion functions may be classified according to the nature of the
united points :—

I. The first class consists of those functions which have no line or plane locus of
united points, and it is divisible into sub-class :-—

I,, the four united points distinct.

I,, two united points coincident.

I;, three united points coincident.

I, all four coincident.

I;, two distinet pairs of coincident united points.
VOL. CCL—A, 2 u
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IL. The second class consists of functions having a line locus of united points,
with the following sub-classes :—
IT,, the two remaining united points distinct.
I1,, the two remaining united points coincident.
IT,, one of the remaining united points on the line locus.
IT,, the two remaining points coincident and on the line locus.

IIT. The third class consists of functions having a plane locus of united points, and
there are two sub-classes :—
ITT,, the remaining united point is not in the plane.
I1T,, the remaining united point is in the plane.

IV. The functions of the fourth class have two line loci of united points.

It is to be noticed that any peculiarity in a function is exactly reproduced in
its conjugate. This will appear clearly from the following discussion, but the
proposition is virtually proved in the concluding remarks of Art. 6.

To assist in the examination of the different cases, it is ‘convenient to repeat
Hawminron’s relations (20) and (21), and in addition to obtain the symbolic quartics
for the function 77, ¢, and F. These quartics are deducible from the relations (20) or
(21) without much trouble. The group of formule is thus :—

Ff=n, F+Gf=n, G+ Hf=2", H+f=n";
H=v"—f G=n"=0"f+)% F=un—n"f+n2"f—f3;
Sr=w"fr = =0 . . . . . . . . . . . . . (56)
H— 30/ H? + (0 + 30" H? 4+ (0’ — 202" — w""%) H
A+ 1 — 00"+ 00" = 0.
G — 20”8 + (20 + /0" 0"?) G — (200 — a0/ 0 4 w0 G

4+ n? — an'n"” 4+ ' = 0.
I — 7B " F? — 02" F 4+ n® = 0.

14. For the sake of brevity in discussing the various classes, one root of the scalar
quartic is supposed to be reduced to zero by replacing the function by one of the four
functions f— &, f— t,, f—ts, f— 1, of Art. 6; and whenever there is a multiple
root, it is the multiple root which is reduced to zero.

L. One quaternion, “a,” is reduced to zero by the operation of the function.

Remembering that the conjugate also reduces a quaternion o to zero, it follows if

Ja=0,f"d=0 . . . . . . . . . (57)
that the locus of the transformed points, p = fq, is a fixed plane,
Spa/ =0 . . . . . . . . . . . .(58)
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because Sqf’«’ = 0. Every plane through the point « is reduced toa line; every line
through the point becomes a point; the scalar n is zero; the function I reduces
every point to ¢ and destroys every point in the fixed plane (58).

The quadrinomial (3) must reduce to a trinomial, for f cannot destroy a quaternion
unless there is a relation between «,, ay, a;, a,, or else between b, b, b;, b, The
type of functions of this kind is

Jo = a8a’ g + a,Sdyg + aSa'sq ;s o = [adydy], o = [aaa,] . . (59).

II. The function destroys two distinct points.
If

Jo=0,fb=0; fla/ =0, f'0 = Coe o ... (60)

the line a, b is destroyed. The locus of the transformed points is the line of inter-
section of the planes . : ‘
Spa/ =0,8pb'=0 . . . . . . . . . (61)

Every plane and every line through the line a, b is reduced to a point. The
function is reducible to the binomial type

Jg = a,8d\q + a,Sa/yq; a4+ th = [a’la'zr’],\ o +UV =[aay]. . . . (62),

when 7 and ¢ are quite arbitrary, and it is evident (15) that the function £ vanishes
identically. '

IIL. The function destroys three non-collinear points.
Jo=0,fb=0,fc=0; fa/=0,fV=0,/c=0. . . . (63);
and every point is reduced to a fixed point, the intersection of the planes
Spa’ =.0, Spb! =0, Spd =0, or p = [aV<] . . . . (64).
Hence the function is a monomial, ‘
fy =[abe]S [abclg =aSag . . . . . . (63),

and the function G vanishes identically.

IV. The function destroys two distinct points, a and b, and alters the weights of two

others, ¢ and d, in the same ratio, but otherwise leaves these points unchanged,
The type is '
Jq - (abed) = tye(abgd) + tyd(abeq) . . . . . . (66).

15. In order to illustrate the nature of the solution of the equation

N N (14

in the different cases, we employ Hamirrox’s relations (56), which give the solution
on substitution.

2 H 2
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1. One latent root is zero. In this case
n=0,fp=0; wog=0Cp-+Fg==0Cp+ws. . . . . (68),
because F reduces every quaternion to the fixed quaternion ¢ multiplied by a scalar .
Here x is arbitrary, provided the condition Fp = 0 is satisfied ; the point G/p lies in
the fixed plane (58) ; and ¢ may be any point on the line joining this point to a, or
in other words, this line is the solution of the equation (67).

If the condition /p = 0 is not satisfied, the scalar  must be infinite, so that in
the limit f(G'p + xa) may have a component at the point @, which escapes
destruction by F. The solution is simply the point « affected with an infinite
weight. .

When # = 0, it appears from Hawmirron’s relations that F satisfies the depressed
equation

F(F—ay=0. . . . . . . . . . (69),

and the interpretation is, # reduces an arbitrary quaternion to « ; ¥ -— n’ destroys a.
I, Two latent roots are zero. Here

n=n'=0, Fp=0; Gp+1lqg=0; n'qg=Hp+0Gq . . (70),

and ¢ must be allowed the full extent of arbitrariness consistent with the conditions.
Observing that the relations (56) now give .

FG=0, GfP=0 . . . . . . . . . (1)

it appears that the double operation of f destroys the result of operating on any
quaternion by &, and that G destroys f?q. IHence,

g = xa' + ya, where Jo =a, ffa=0. . . . . (72)
The scalar .« 1s determinate for ‘
fGg=0CGp==aa . . . . . . . . . (73),

but ¥ is arbitrary, and the solution is any point on the line, y variable,

w'g=Hp+ad +yau. . . . . . . . . (74)

As before, if Fp is not zero, the solution is @ multiplied by an infinite scalar.

The character of the function &' has now completely changed. It now destroys
a line (f%q), and because Gf? =0, or Gf*H? =0, and also n’ = 0, the symbolic
equations of G and £ are both degraded, and are ’

GG =" =0, F=0 . . . . . . . (75).
I,. The solution in this case is

n=n=n"=0; Fp=0, Gp+ Fqg=0, Hp4 Gq=10; w'q=p-+ Hy . (76)
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The symbolic equations now give

; F=0, G=0, Hf$=0, G=—If F=1IHf . . . (7).
anc
Hq = aa” + ya' + 20 where fu' =, fu=a, fo=0 . . (78).

The solution thus takes the more explicit form,
Wqg=p+ac +ya +fra; Hp=xa +ya; Op=—za, Fp=0. (79),

and z alone is arbitrary.
If' the last condition is not fulfilled, z is infinite.
I, Again, where n”” = 0, the solution is any point on the line, w variable,

g=ua" Gy 420 dwa; p=wd dya o fp=ya ya; frp=wxa; fp=0 . (80).
The symbolical equations satisfied by F, &, I and f are now
P=0, =0, H*=0, f*=0 . . . . . . (81)

Although the forms of the equations for F and G are identical, the nature of these
functions are widely different; G' reduces an arbitrary point to the line wa' 4 ya,
which is destroyed by a further application of the same function; / reduces an
arbitrary point at once to the point wa, which is destroyed by a successive operation.

The type of a function of this class I, is

ﬁ] (aOL\OL\\OL\“) = (aqa\\a\\\) + (1/\ (aa\qa\\\) + a\\ ((la\a\\g) . . . (82),

in which «, @', ¢ and ™ are arbitrary quaternions.
The function, :

F(Q) . (aabd) = a (aqbh') + td (ax’qd’) + (b + £0") (arbg). . . (83)

belongs to the sub-class I

16. II,. A function of the second class destroys two points, « and b, and in virtue
of the distributive property it destroys the line a, .

Since the locus of fg is a line (61), the function F vanishes identically (15), and
likewise the invariant »n’ as well as n.

HamirroN’s relations become,

n=n=0; F=0, Gf=0; Hf+G=n", H+f=n" . . (84)
and the symbolic equations for fand G degrade nto
F=fen"f2+af=0; G(GE—=n")=0 . . . . (85).

The function G — n” destroys the line a, b, which is consequently the locus of Gy.
For the solution of the equation fg = p, the relations (84) give
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W'q=Hp+ Gq; Gp=0. . . . . . . . (86);

and since G'¢ may be any point on the line @, b, the locus of ¢ is the plane [ Hp, a, b].
If Gp = 0 is not satisfied, the solution is an arbitrary point on the line a, b
affected w1th an infinite weight.
1L,. If #” = 0, the solution is

] Wo=p+Hy; Hp+Gg=0, Gp=0. . . . . (87),
an
G=0, Hf*=0, Hf=~—-6G . . . . . . (88),
whence
Hqg =xa +ya +2b, Hp=wa if o =4fau . . . . (89)

11,. If further, »’” = 0, the solution is
q = xa" + ya' + za+ wb, p=uwa 4+ ya, fp=wx, [fp=0. . (90);
and the general function of this type is
Jg (aba'a) = a (abqa™) + o (aba’q) . . . . . . (91),

and the function & of I, is of this sub-class.
17. IIL,. The third class is that in which f destroys three points «, b, ¢, which are
not situated on a common line

Here
n=n'=n"=0; F=G=Hf=0; o""=f+H f—a"f=0 . (92),
and the solution is _ '
Wq=p -+ xa+yb-+z where Hp=0 . . . . . (93).
UL, If #” = |
qg=2aa + ya + 2b+wec where p=uwxa, fo=a . . . (94).
The type of the function is
Jf(q) . (abea’) = a(abeq) . . . . . . . . (95),
to which the function F of I, belongs.
18. IV. The fourth class is that in which two lines ab and cd are destroyed.
n=n'=0 F=0 Gf=0 Hf+G=n"=1" H+f=nu" . (96)

and the symbolic equations arve A
J(f=i")=0; GG —=n")=0 . . . . . . (97).
F(q) . (abed) = tye(abgd) 4 tyd (abeq) . . . . . . (98)

is of this type. fdestroys the line a, b and reduces an arbitrary point to ¢, d;
J —t, destroys ¢, d and reduces an arbitrary point to ab.

The function
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19. As the theory of the self-conjugate linear vector function differs in various
details from that of the self-conjugate quaternion function, it is necessary to devote
a few remarks to the latter.

The four united points of a self-conjugate function form a tetrahedron self-
conjugate to the unit sphere, for in this case the two tetrahedra of Art. 8 coincide.
If two united points coincide, they must coincide with a point on the sphere, and the
scalar quartic has a pair of equal roots. But in the case of a real self-conjugate
vector function when two latent roots are equal, the function has an infinite number
of axes in a certain plane, and not a single axis resulting from the coalescence of a
pair ; and the reason is simply that a real vector cannot be perpendicular to itself,
while each axis of a self-conjugate vector function must be perpendicular to two
others. For a quaternion function, on the other hand, a real point may be its own
conjugate with respect to the unit sphere, and there may be in this case
coincidence of united points without a locus of united points and consequent
degradation of the symbolic quartic.

Again, the roots and axes of a self-conjugate vector function must be real, because two
conjugate imaginary vectors, e + v/ —1 B, a — / — 1 B, cannot be at right angles
to one another, since the condition is a® -+ B8° = 0, while a® 4 8% is essentially
negative. But two united points of a real self-conjugate quaternion function may be
conjugate imaginaries, the condition

S(@4++v =1b)(a—+/ —10)=8a®+8h*=0 . . . (99),

merely showing that the real points @ and b are situated one inside and one outside
the unit sphere.
20. On account of the importance of the self-conjugate function, it may not be
superfluous to illustrate cases of coalesced united points.
Whriting for the general self-conjugate function,
J(l4+p)=e+e+Sep+ dp; S(1+p)f(1+p)=c+ 23ep 4 Spdp . (100),
the latent quartic is
tt =% (e +m") + & (em” + m' — &)— ¢ (em’ + m 4 Se (P — m”) ¢€)
+m (e —Sedle)=0 . . . . . . . . (L01).
The quadric surface Sq fq=0 has its centre at the extremity of the vector —®~1e,

| or say at the point c.

One root is zero if
e—Sedle=0 . . . . . . . . .(102),

and the quadric is a cone with its vertex at the point c. A second root is zero if
m= — Se (& — m' +m'd7!) e = — mBed %, or if T®le=1 . . (103);

that is, if’ the vertex is on the unit sphere.
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A third root is zero if
m' = Se (1 — m"® 1) e orif Se(l — m"®1+ m'®?) e = mSedPe =0 . (104),

and this simply requires ® % to be parallel to a generator of the cone, and
perpendicular to the vector to its vertex. This generator touches the sphere.
The condition that the fourth root may vanish reduces to

mlTdPe=0 . . . . . . . . . . (105),

and requires m = 0 for a real function, and in this case the cone breaks into a pair
of planes, and the symbolic quartic degrades.

Admitting that Td~% = 0 (for an imaginary function), it appears that the
generator —®le 4 x®~% is common to the quadric and the sphere when four
roots are zero.

The preceding analysis establishes the fact that a real self-conjugate function may
belong to the classes, 1), 1y, I, 1T, but not to I,

A real self-conjugate function cannot belong to I if its two united points are
veal, for certain of the conditions of self-conjugation of the tetrahedron in the
limit require Sa® = Sab = S)* = 0, or the line @, 0 must be a generator of the
sphere ; and matters are not changed when we assume a and b to be conjugate
imaginaries. We conclude therefore that no self-conjugate function belongs to I.

Since self-conjugate functions of the type II, exist, ¢ fortior: they will exist for
the less restricted types 11, IT,, 1L,

Self-conjugate functions may belong to the types III;, ITL,. and to type 1V, the
lines being now conjugate with respect to the sphere (compare the following Article).

21, If a function converts any letrahedron into its reciprocal, it is self-conjugate.

Here if

Jo=ualbed], fb=ylacd], fe=1zlabd], fd=wlabc] . . (106),

the function producing the transformation is

Jq (abed) = a [bed] (qbed) — y[acd) (qaed) + = [abd] (qabd)
A — w[abe] (qube) . . . (107),
which is manifestly self-conjugate.
This includes as a particular case the deduction from Art. 8.

The following theorems may be stated here —-

If a function has a scalar for a principal solution, its conjugate has three vector
principal solutions.

If a function has a line or a plane locus of united points, i1t has a vector or
a linear system of vector principal solutions.

The nature of the function f,, which is the negative of its conjugate, has been
sufficiently considered in Art. 12.
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22. It may be as well to show the geometrical meaning of changing from a
function f to another f— f,, asin Art. 14.
Writing
= (f—t)g=p—tg, p=jy. . . . . . (108);

it is obvious that p’is some point on the line pg. To determine the point, let
v, p and @ be the points p’, p and ¢ with unit weights, then

= Pl Se— ke PSfe—1a ‘
P_Sp—t()SQ_SfQ.—_fo_ Sfa — 1, o (109);

and we have the ratio of segments

, o
]—?;9:5;—)’————1)—,—:@-'-@- oo oo o (110),

or its ratio is directly proportional to the perpendicular from the point @ on the
plane Sf¢ = 0, which is projected to infinity by the transformation.™*

Hence it is easy to form a geometrical conception of the nature of a transformation
by reducing it to some simpler type, as in Art. 14; the point P for instance may
always be supposed to lie in a fixed plane, while in the case of functions of the
classes 1T and ITI it may be supposed to lie on a fixed line or to be a fixed point.

SECTION III.

SCALAR INVARIANTS,

Axt. Page
23. The extent of the invariance . . . . . . . . . . . . . . . . . . . . 241
24. The sum of the latent roots is zero. . . . . . . . . . . . . . . .. 242
25. The sum of fractional powers of the roots is zero . . . . . . . . . . . . . 242
26. Tetrahedron inseribed to one quadric and circumseribed to another . . . . . . . 243
27. The sum of the products of the roots zero . . . . . . . . . . . . . . . 244
28. The sum of the roots and the sum of their reciprocals zero. . . . . . . . . . 245
29. Twelve-term invariants. . . . . . . . . . . . . . . . . . ... 246

23. From the results of Arts. 5 and 6, it appears that
(f=t)a, (f=)b, (f—t)e, (f—t)d) = (abed) (n — 0/t 4 2"t — 0> 4 ¢*) (111)

is identically true, no matter what the value of ¢ may be or what quaternions
a, b, ¢, and d may represent. In this sense the four scalars n, #/, n”, and »n”" are
invariants, and every relation connecting them implies some peculiarity in the

geometrical transformation produced by f.

* In vectors, if Q=1+ p, the ratio is f,= (¢ +S¢'p). =to~T¢ if « is the length of the perpendicular.
VOL. CCL—-A, 21
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But there is a wider sense in which these four scalars are invariants. If #n; and n,
are the fourth invariants of any two functions f, and f;, the relation

(Sffe = th ) e (fudle = VA L) 0, (A — U)o (Nl — U ) d)
= (abed) nyny (n — 0't + 0% — 063 + ) (112)

is evidently true or may be verified at once by repeated application of (16). Thus
any relation implying a peculiarity of the function f and depending on its four
invariants, implies also a corresponding peculiarity in the mutual relations of the
functions f, ff, and £ f;, that is, of any two functions I, and F, decomposible in the
manner indicated. In particular, if in (112) f, is replaced by /7%, it is evident that
the invariants of f ff;™" are identical with those of . And, moreover, the functions
may be replaced by their conjugates without altering the invariants.

We now propose to examine the meaning of a few invariants, bearing in mind the
remarks of this article, and remembering also that the invariants are more general
than those of quadrics, for the function f'is not supposed to be self-conjugate.

24. For brevity, replacing fo by o/, we have

" (abed) = (@'bed) + (ablcd) 4 (abe’d) + (abed’) . . . . (113).

If 0" vamishes, 1t is possible to determine an infinite number of tetrahedra a, b, ¢, d,
so that the corners of a derwed tetrahedron shall lie on the faces of the original.

For taking any three points a, b, ¢, and their deriveds o', #/, ¢/, three planes are
found

(@'bed) = 0, (abled) =0, (abdd)=0 . . . . . (114),

whose common point d enjoys the property of having its derived in the plane
of @, b, and ¢ if, and only if, #” = 0.

Conversely, if this is true for any tetrahedron and its derived, the invariant »"
vanishes, and the property is true for an infinite number of tetrahedra.

Interchanging the words corner and fice, we have the corresponding interpretation
of the vanishing of #'.

More generally, when #”” vanishes, an infinite number of tetrahedra exists, so that
the pairs derived from them by the operations of the functions f, ]72 and f f; are
related in the manner described.

Analogous extensions will be understood in the sequel.
25. Again, suppose that the sum of the squares of the roots of n, = 0 is zero, or that

W =20 =0 . . . . . . . . . (115).

In this case, tetrahedra may be found related to their correspondents in such a
manner that the deriveds of these correspondents have their corners on the faces of
the originals.
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Of greater interest, however, is the case in which the sum of the cquare roots of
the roots of #; = 0 is zero, or when

(W' = A"V =64n . . . . . . . . (116).

Here the n”” invariant of one of the square roots of the function (compare Art. 36)
vanishes, so that by the operation of this square root f*, it is possible, from a suitably
selected tetrahedron (one of an infinite number), to derive a second, and from that
again a third, so that the second has its corners on the faces of the first, while its
faces contain the corners of the third, But directly by the operation of f(= f*.f*)
the third tetrahedron is transformed from the first, and these are so related that it
is possible to inscribe to the first a tetrahedron circumscribed to the third.

Similarly, we can interpret invariants arising from relations such as

T N (10

where m is the ratio of two integers, and where ¢, ¢, t;, and t, are the latent
roots of f.

26. Before passing on to invariants of a rather different type, we shall consider the
relation connecting two quadric surfaces when an infinite number of tetrahedra can
be inscribed to one and circumseribed to another.

Let the equations of the quadrics be

S¢Fg=0, SgFq=0. . . . . . . . (118);

let the tetrahedron (abed) be inseribed to the first, and let its faces touch the second
at the points o/, U/, ¢/, d’; let the function f derive the tetrad of points of coutact
from the corresponding vertices. Then there are four equations of inscription to the
first quadric

SaFe =0, SbFb=0, ScFic=0, SdFd=0 . . . (119);

twelve equations of conjugation of the points ¢’, b, &ec., to the second quadric
Sa/Fob = S0Fya =0 or Saf'Fyb=8alFyfo=0 . . . (120);
and four equations of contact such as
Sa’Foa/ =0 or Seuf'Fyfu=0.
The equations of conjugation require the function F, f to be self-conjugate, so that
FE,=F7. . . . . . . . . . (121),
and the conditions of contact may therefore be replaced by four equations such as

SaF,ffa=0. . . . . . . . . . (122)
212
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An infinite number of tetrahedra may consequently be respectively inseribed and
~circumscribed to the quadries

Sgl, f2q =0, Sellyg=0 . . . . . . . (123),

when the condition (121) is satisfied and when the % of f vanishes; and if' this is

likewise possible for the given quadrics, we must have
F,f*="1, or fP=F"1F, o jf=(F, W)y . . . (124)

The sum of the square roots of the latent roots of the function F,7'F, must
consequently vanish, or the invariant®™ (116) of this function is zero.

It has been proved incidentally in this article if' & tetrahedron circumseribed to
Sty = 0 is self-conjugate to SglFyq = 0, that the invariant " of the function
F,71F; 1s zero ; and if the tetrahedron is self-conjugate to S¢Fyq == 0 and inscribed
to SqF,q = 0, that the same invariant of the function Fy7'F, is zero. Here
Fy=F, .

It must be carefully observed that in dealing with quadrics the extent of the
invariance (Art. 23) is limited. If I, and I, are self-conjugate, the functions i1, f,
and /Iy f, must be self-conjugate before theorems can be extended from the quadiics
determined by the simpler to those determined by the more complex functions.

27. The invariant #” vanishes if’

(d'Ved) + ('be'd) + (' bed') -+ (al/dd) 4 {abecd’) + (abe'd) =0 . (125).

To save verbiage in the interpretation, the edges ab and ¢/d’ may be called the
opposite edges of a tetrahedron and its derived.  If each edge of (abed) intersects the
opposite edge of (¢/b/¢d’), the invariant will manifestly vanish, for every term will
be zero.

To display the nature of the conditions requisite for determining a tetrahedron
possessing this property, when 2 = 0, let ¢ and b be assumed fixed, and then five of

the terms may be written in forms
Sefd =0 (n=1,2,8,40v5). . . . . (126),
where f,, is one of five linear quaternion functions. Three equations give
c=[fd, fud, £ . . . o oo (127),
and substitution in the fourth and fifth require the point d to be on the curve of the
quartic surfaces
(Fid, fod, fod, i) =0, (fid, fody fod, fod) =0 . . . . (128),

# This condition appears to answer in every particular the condition (compare ¢Hlements of
Quaternions,’ New Bd., vol. ii.,, p. 377) that a triangle can be inscribed to one conic and circumscribed to

another (see, however, SALMON’s ¢'T'bree Dimensions,” Note to Art. 207).
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which is complementary to the sextic curve (compare Art. 64),
LA, fod, fsd]=0 . . . . . . . . . (129).

Selecting any point d on this complementary curve of the tenth order, ¢ is
determined by (127), and the sixth condition must be satisfied.

Hence it appears that any two vertics may be assumed at random, and a plane
locus for the third. Ten points ¢ lie in this plane, and ten tetrahedra satisfy the
conditions.

Generally, also, if the sum of the products of the square roots of the latent roots
of the function vanishes, an infinite number of tetrahedra may be found related to
their correspondents, so that corresponding edges a, b; o/, I/, are intersected by
opposite edges of intermediate tetrahedra. (Compare Art. 25.)

28. The case in which the two invariants n’ and »” vanish simultaneously is of con-
siderable importance in the theory of the linear function. These conditions are
always satisfied for the functions 2f, = f — f’; and also for functions of a more
general type; in fact, for functions whose squares satisfy a depressed equation

(P 4 0f =0, or (2= ) (=) =0 . . . (130)

It appears from Art. 24 that two systems of tetrahedra exist, one set having their
correspondents inscribed to them, the other set being inscribed to their corre-
spondents. We shall prove that one system of tetrahedra exists which are at once
inscribed and circumscribed to their correspondents.

Let ¢, and ¢, be the united points of f for the roots + s, and ¢/; and ¢/, for the
roots 4. Take any line whatever

q = (g, + uqy) +y(¢L + v9'y) (@, y variable) . . . . (131),

intersecting the lines ¢, and ¢’1¢’,, The function f converts this line into the
line

p = xs(qy, = ugqy) + ys'(¢h — vy (132),

which intersects the connectors of the united points in the harmonic conjugates of
the points of intersection of the original line. Repeating the operation, the line p is
restored to ¢.

In other words, when »n' and »” vanish, the transformation interchanges lines which
cut harmonically the connectors of the wnited points; or it transforms a certain con-
genency of lines into itself.

Take any tetrahedron having opposite edges, ab and cd, on two conjugate lines of
this congenency ; the corresponding tetrahedron has the two edges ¢/d’ and o't/
respectively on those two lines, and either tetrahedron may be said to be at one and
the same time inscribed and circumseribed to the other.
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If the line «, b intersects the connectors in the points @, and ¢/,, and if o/, I/ inter-
sects them in Q,, @/, (compare (131), (132)), we may write
a=Q + 6HQ s b=1q +t,0; =350 + & ; d =2sq + s,Q;
o = 5Qq + S,tlngi V= 5Qq + S,tzQ/g ; ¢o= Q- th,’g ; d == Qy 1 tzLQ/g )

fl

and the anharmonics of the ranges abc’d’ and o'tVed are

(ab)(dd) _ ss'(t, —t)(ty — 1) . (V) (ed) _ 85"t — o) (E, — 1))
(b) (d'a) ™ (sty — s't3)(s'ty — st,) " (Ve)(da') — (sty — sty)(sty, — s't,)

For a pair of quadrics (118) a quadrilateral on one determines a self-conjugate
tetrahedron with respect to the other if #' and 2" of the function F,~'F, vanish.
Moveover, in this case the quadrics

SqFig =0, SgFl "'y =0

intersect in a common quadrilateral.

29, It may be worth while drawing attention to a simple rule for obtaining in a
convenient form certain scalar invariants of linear functions. These invariants are
the coefficients of powers and products of x), @, &c., in the latent quartic of the
function

x f1 4+ % fo+ . Tf

and the rule is to distinguish by accents or suffixes the symbols in (abed) just as if
this expression had been differentiated. For instance, there is the twelve-term
invariant

nyg (abed) = Z(a,byed)

where «, stands for fi«, and a, for fa.

It would appear that when a twelve-term invariant vanishes, every term will
vanish provided the tetrahedron (abed) is suitably inscribed to a definite curve.

Suppose eleven terms vanish. Let three be solved for a, and substitution in the
remaining eight leaves eight equations in 0, ¢ and d. From three of these find 0,
and five are left in ¢ and d; and on elimination of ¢, two equations in d remain,
which represent a definite curve. From symmetry the remaining three vertices
trace out a curve or curves. These curves are covariant with the functions.
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SECTION IV.

Tar Rerarions or A PAmr or Quabprics, S¢F g = 0, S¢F,g = 0, WHICH DEPEND
oN THE NaTURE oF THE Funcrion F,~'F,.

Art. Page
30. The self-conjugate tetrahedron . . . . . . . . . . . . . .. L L L. 247
31. Coincidence of two of its vertices . . . . . . . . . . . . . . . . . . 247
32. Ooincidence of three vertices . . . . . . . . . . . . . . . . . . . . 248
33. The tetrahedron becomes a point . . . . . . . . . . . . . . . . . . 248
34. The function Fy7'F; has a locus of united points . . . 249
35. Scheme of the nature of intersection of the quadries mccordlng to the type of thc

funetion Fo=1Fy . . . . . . . . o . L L o L L L L .. .. ... 250

30. We shall briefly consider the relations of a pair of quadrics which depend on
the peculiarities of the function Fy,™'F,, where

SgFig =0, SqFyg=0 . . . . . . . . (133)

are the equations of the two quadrics.
If the polar plane of the point ¢ is the same with respect to the two quadrics,

Foo=t,Fe . . . . . . . . . . (134),

where #, is a scalar, because (Art. 11) the symbols of the polar planes are F,¢ and
Foa. Here ¢, is a latent root of the function F,™'F, and « is a united point.

If b is a second united point answering to the latent root ¢,, we have, on account of
the self-conjugate character of the functions F, and F,,

t,SbFy = SOF\0 = SalF\b =t,SaFb=0 . . . . . (185),

provided the latent roots are distinct. Thus the polar plane of « contains the points
b, ¢, and d; and the tetrahedron is self-conjugate to both quadrics. The function
F\~'F, belongs to the general type I), in which all the united points are distinct
(Art. 13).

31. Let two united points @ and b approach coincidence. The relation (135)
remains true up to the limit, and ultimately

Sala =0, SaF,a=0 . . . . . . . (136);

and the coalesced point 1s situated on the curve of intersection of the surface. By
(134) the symbols of the tangent planes to the two surfaces are identical, and the
two surfaces touch.

If then F,™'F, belongs to the type I, the surfaces touch, and conversely; and if
the quadrics touch in two distinet points the type of the function is I,, and the
intersection is a line and a cubiec.
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Let ¢ and d be the remaining united points. By (185) the line ¢, d lies in the
common tangent plane; so in order to determine the generators of the two quadrics
in the plane, it is only necessary to determine the points in which the quadrics meet
the line ¢, d. For the first and second quadries, the equations determining the
points ¢ + @d are respectively (134)

tsScFyc + 2%, SdF,d =0 ScFye + «®SdF,d =05 . . . (137).

The quadrics consequently have distinet generators unless t; = ¢, and unless the
points ¢ and d are distinct.

For quadrics having a pair of common co-planar generators, F,7'F, is of the type
11,, and conversely.

32. In the next place, let three roots ¢, be equal, so that a is the union of three
united points of f= F,7'F,. The point & of Art. 15 (78) is now in the common
tangent plane, because it has been derived by the operation of f'— ¢, from another
point ¢, In fact we have

(F,—t,F,) a" =Fy', (F,—tF)a =Fa . . . . (138);

and from the first of these it is obvious that SaFyu = 0 (= ¢,7'Sal"\a"), while the
second may be written in the form

F(a + 2a’) = (1, + «) (c& + t/:_t? . (1‘) oo (139)
\ 1 : /

This equation shows that the polar plane of the point ¢ 4 xza' with respect to the

first quadric is identical with the polar plane of « - rgff_l%c@ with respect to the
L+
second ; and because « lies in the tangent plane, in the limit where & becomes

infinitesimally small, the two points become identical to the first order of x, and the
common polar plane becomes a consecutive tangent plane to both quadrics. The
quadrics have, therefore, stationary contact, and their function F,”'F, is of the
class I

The generators in the tangent plane are now found by expressing that aa' - d 1s
on one of the quadrics ; the equations may be written in the form

80 Foer -+ 2wt S Fod + 1,8 Fyd = 05 &S’ Fyar' -+ 2a8a’ Fyd 4 SdFyd = 0 . (140),

where the equation for the first quadric has been reduced by the aid of (138), in
order that it may be compared with that for the second quadric. The generators are
common if, and only if, ¢, = ¢,, and the function is then of the type IL,.

33. When the four united points coincide, the point ¢ as well as ¢ lies in the
common tangent plane, ¢ having been derived, as «' was in the last article, from a
third point ¢™. From the three equations
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(F, =t F)a™ =Fa"; (F,—t,F)a" =F'; (F,—tF,)e =Fa . (141),

we see that, in addition to the conditions that the points should lie in the tangent
plane, we have

St (F,—t,F)) o =0; SaFye =0, and SeFo =0 . . (142),

as appears from operating on the third by S and using this result in operating on
the second by Sc', and finally operating on the third by S¢’. The line a + za' is
consequently a generator of both quadrics, and the function belongs to the class 1,

The remaining generators, determined by the point in which &' + ya" meets the
surfaces again, are deducible from the equations

tlSa‘de“ + ytSa Fya” + ySa"Fyo = 05 Sa'For™ + ySa™Foa™ = 0 . (143).

If these remaining generators are common to both quadrics we must have
S Fya' = 0, and then they coincide of necessity with the other generator, and the
quadrics become a pair of cones touching along a generator. v

34. Suppose the function to have a line locus of united points, so that

Floa=tFa; Fb=¢Fb. . . . . . . (144);

it immediately follows that one quadric meets the line @, b in two points common to
the other, and the quadrics touch at these two points. Substituting in the equations
of the quadrics '

q=wxa+yb+z(ct+ud) . . . . . . . (14D),
the eQuations beéome, |
1S (a4 yb) Ty (2o 4 yb) + 22 (1,8¢Fye + 0, SdF,d) = 0
S (za 4 yb) Fy (xu + yb) + 2° (ScFye + v*SdFyd) =0 . . . . (146),

and for a constant value of u these represent the sections by an arbitrary plane
through the line , b. These sections are identical if

(t3 — 1) ScFoe + 0? (8, — t,)SdFd =0 . . . . . (147),

and as this is a quadratic in u, the quadrics have two plane sections common. The
tunction fis of the type II. The case of coincidence of the points ¢, d has occurred
in Art. 31, one of the conics breaking up (type IL,). ‘

If #; = ¢;, while ¢ is not situated on ab, the quadrics have two coincident plane
sections, or ring-contact. The type of the function is JIT,.

If t; = t,, but ¢ not coincident with d, the function is of the class IV., and the
quadrics intersect in common points on the line ¢, d. Let ab meet the quadrics in
a/, V' and cd in ¢d’, then it is very easy to see that ¢, ¢/, U/, d’' is a quadrilateral
common to both surfaces. '

VOL. CCL.—A. 2 K



250 PROFESSOR C. J. JOLY ON QUATERNIONS AND PROJECTIVE GEOMETRY.

When ¢ coincides with a point ¢ on the line, let ' be the point for which (Art. 15)
(Fy—tF)a =¥ . . . . . . . . (148),

then Sa¥,a = 0, and SbF,a = 0, and the line ad touches the two quadrics at @. The
conics in the common plane sections touch (type IT,).

If, further, d coincides with the point a (type I1,), the point Fya' is derived by the
operation of F, — ¢, I, from some other point «" (Art. 32), and therefore

Salfya’ = 0; SFyw =0; and Sal\e' = 0; SbF ¢ =0 . . (149).

Hence it appears that the line ¢ + b meets the two quadrics in the same two points,
and the lines from @ to these points are common generators. The intersection of the
quadrics consists, therefore, of a pair of lines and a conic passing through their
common point (type II,).

Finally, it remains to notice the case of a plane locus of united points with the
fourth point in the plane (IIL,). Tt may be proved that in this case the coincident
plane sections consist of a pair of lines along which the quadrics touch.

35. Summing up, the intersection of two quadrics according to the types of the
function ¥y~ is

1, a twisted quartic with two apparent double points ;

I,, a twisted quartic with three apparent double points ;

I, a twisted quartic with two apparent and one real double point ;

I,, a right line and a cubic touching it ;

I;, a right line and a cubic ;

11, two conics ;

II,, a pair of lines and a conic;

I1,, two conics in contact ;

II,, a pair of lines and a conic through their intersection ;

IIT,, the surfaces touch along a conic;

I17,, the surfaces touch along two generators ;

IV, the intersection is a quadrilateral.

SECTION V.

Tar SQUARE Roor or A Linuar Quarernton Funcriox.

Art. Page
36. The sixteen square roots of the general function . . . . . . . . . . . . . 250
37. Case of a function with loci of united points. . . . . . . . . . . . . . 251
38. Various useful formulee . . . . . . . . . . . . . . . . . . . . . 2b2
39 A square root of the conjugate is the conjugate of a square voot . . . . . . . . 252

36. When the same effect is produced by the twice-repeated operation of one linear
gquaternion function and by the single operation of another, the former may be said
to be a square root of the latter.
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Tarr first extracted the square root of a linear vector function, and pointed out the
great utility of the conception. We now proceed to examine some of the properties
of a square root of a quaternion function, and to illustrate their bearing on certain
geometrical investigations.

The united points of a square root are also united points of the primitive function.

If

Sffa =tta, then fo=1ta . . . . . . . . (150)

The converse does not hold, for it may happen that loci of united points exist for the
primitive and not for the square root. For example, if

Sla=0b, fio=ta; then fuo=1ta, fo=1¢b . . . . (151),

and though every point on the line @ b is a united point for the primitive, this is not
generally true for its square roots. (Compare Art. 13.)

When there is no locus of united points, the square roots have the same four united
points as the primitive, and their latent roots are sets of the square roots

Htp, At =tk i . . . . .. (152)

of the latent roots of the primitive. Thus in the general case a function has sixteen
square roots. ‘

87. When the primitive has a line locus of united points (a, b), any two points on
the line may be assumed as united points of the square root.

By the last article it may be seen that the square root must have united points
on the line. Assume these to be « -+ b, @ -+ b, then

SiHe+ab)=+ti(a+ab); fflat+yb)=+tF (a+yd) . . (153),
and the square root satisfies the condition that its twice repeated operation is
equivalent to the operation of f. If the signs are alike and « and y distinct, the
square root has a locus of united points; otherwise it has not.

If a square root has coalesced points, so has the primitive.

If
Sfio'=td +a; flo =ta; then fo =ta + 2ta; fo=ta. . (154),

and therefore the repeated operation of f— ¢ is required to destroy «'; and the
primitive has a coalesced united point. »

- The square root of a function having a plane locus of united points possesses at least
a line locus of united points.

The only escape is the assumption that the square root has a united point coalesced
from three points, and this has just been shown to involve a coalesced point for the
primitive, contrary to hypothesis.

When the primitive has coalesced points but no loci of united points, the number of
square roots ts lumuted.

This follows from (154).

2 K 2
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38. Fxcept in the case in which the primitive has loov of wnited points, the square
roots are all commutative with one another and with the primative, for they possess a
common system of united points.*

Moreover, for a definite square root,

S+ (F+y)=(/+2)(/+y) . . . (185),

with liberty to change the order of the factors. This follows most easily by operating
on the united points.
In general also, for any two functions f, and f,, and a definite square root,

ST = (AT o o o L (156),
ol = ffi SRS =Ff2f . (6T

and In particular a relation which is occasionally useful is
WY+ =AY iAo 0 o (158)

39. It is evident from the foregoing that the square roots of a function and of its
conjugate are conjugate when they have the same latent roots.

(Y =f% . . . . .. .. .. (159),

to signify that the conjugate of a square root is the corresponding square root of the

because

Thus we may write

conjugate function.
In particular, taking the conjugate of (158),

L O = fE GRS 07 (1o0)

SECTION VL

Tue SQuare Roor or A FUNCTION IN RELATION TO THi (GEOMETRY OF

(QUADRICS,

Art. Page
40. The quaternion equation of generalized confocals, ¢= J{(/+=) (f+y) (f+2)}e . . . 252
41. The general case of quadries inscribed to a common developable . . . . . . . . 253
42. The quaternion equation ¢= /(fi~'fa+ )@ of the intersection of any two quadrics. . 254

40. The transformation

converts the quadric Sqfy = 0 into the unit sphere Sp? = 0, f being a self-conjugate
function.

* Compare ¢ Elements of Quaternions,” New Ed., vol. ii., Appendix, p. 364.
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This suggests a quaternion equation such as
¢={+a(V+y) U+ e=VI{F+0U+9)(f+2)5e . (162),

where ¢ is some constant quaternion, as equivalent to the equation of a system of
generalized confocals ,

Sg(f+a)ytg=0. . . . . . . . . (163)
On substitution in the scalar from the quaternion equation the result is
Se(f+y)(f+2)e=0. . . . . . . . (l64),
and y and z disappear, provided e is chosen to be one of the eight points satistying
Se? = Sefe =Sef?e=0. . . . . . . . (165)

Thus e is one of the intersections of three known quadrics.

It is not necessary to dwell on Hamruron’s theory of the umbilicar generatrices, as
the subject will be resumed in an extended form.* Accordingly it is sufficient to
mark that the equation of such a generator is

=(fHn(Ftaye=(f+ayeti—o) L(f+aye. . (166,

where y is variable; and the form of this equation shows that when a varies the
generator sweeps out the developable of which the cuspidal edge is the curve

q=(f+xfe . . . . . . . . . (167).
41. More generally, starting from any two quadrics,
Sefig =0, Sqfeg=0. . . . . . . . (168) ;

the equation of the system of quadrics inscribed to their common cireumscribing
developable (compare Art. 11) is

S¢(A 7 +afy ) lg=0. . . . . . . . (169).
This by the principles of Art. 38 may be replaced by
SefH (AT o)y g =0 . . . . L L (170);

and on comparison with (163) and (162) it is manifestly equivalent to the quaternion

fiq = (AT + o) (RS + o) (AT o). (171
or, by an application of (158), to

="+ (Ah+ ) (A +efe o o (172),

* Compare Arts. 41 and 71.

equation
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where ¢ = f,7*¢/. By (165) it 1s seen that the quaternion e of this formula satisfies
the three equations

Sefie = 0, Sefofi e =0, Sefo iV e =0 . . . (173),

and is therefore one of the intersections of three quadrics.

42. Tn particular the equation of the curve of intersection of the original quadrics
(168) is

q = (fi"fy + x)a, where Safio = Safia = Saf, fi7 for = 0. . (174),

as may be proved by direct transformation from the general result (172), or perhaps
more shortly by assuming the form ¢ = (f'+ x)*a and determining f; or by verifica-
tion. remembering (158).

Hence the equation

a(fo i+ 2T Fa)e=0 oo (175)

determines the eight points of intersection of the three quadrics

Sqfig =0, Sqfeg =10, Sqfyq=0.

SECTION VIIL

Tue Faminy or Curves ¢ = (f 4 t)"a AND THEIR DEVELOPABLES.

Art. Page
43. Some members of the family . . . . . . . . . . . . . . . . . . . . 254
44. The tangent line and the developable . . . . . . . . . . . . . . . . . 254
45. The osculating plane . . . . 1515
46. The intersections of the curve w1th the owulatlng p](mc Coe o ... 2B6

43. Instead of writing down and discussing the equations of the circumseribing
developable and of its cuspidal edge of the quadrics (169), which are in fact of the
same form as (166) and (167), except that f= f;7'f, is not self-conjugate, we shall
devote a few remarks to the family of curves

q = (f—l— t)”’OL C e e e e e e e e (176)

and their developables, m being a scalar, a a constant quaternion, ¢ a scalar variable,
and f an arbitrary linear quaternion function. This family includes the right line, the
conic, the twisted cubic, the quartic intersection of two quadrics, the quartic which is
not the Intersection of two quadrics, and the cuspidal edge of the developable
circumseribed to two quadrics ; the corresponding values of m being m =1, 2, —1
or 3, 4 and £

44. The equation of a tangent to the curve (176) is

g=(f+s)(f+0a . . . .7,
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when the scalar parameter s alone varies. When s and ¢ both vary the equation is
that of the developable of the tangent lines.
If for suitable weights of the united points ¢y, 9,, ¢s, ¢4, We write

a=q+q@+e+q - . . . . . . . (178),
the equation of the developable becomes
q= %(tl +s) @ 40 . o o o oL (179).
When m — 1 is positive, the result of putting t = — 7, is |

q=(t,+ ) (ty — tl)ﬁl;lqz +(t 4 8) (G — 1) g+ (4 8) (G —1)" g, . (180) ;.

and this represents a certain number of right lines in the united plane [q,, ¢4, ¢,], the
number being determined by the nature of m, being as we know 4 when the develop-
able is circumscribed to a pair of quadrics, or when m = 3.

The remaining part of the intersection in the united phne is obtained by putting s

equal to —¢,, and its equation is
q=(ty—t) (ta+ )" + (ts — 1) (s + 1) 75 4 (8 — 1) (b + )" g0 - (181);
or more simply
=(f 4ty e, where ay =, — ) g+ (& —1t) g+ —1t)q,. . (182).

The plane curve is likewise included in the family (176), and for m = § it is a
quartic (174), or rather a conic counted twice,

g by =13

t t, — 1
z? BT I Bl 2 o=l
? + Pt — )

(t~ - ’ ) ’ <f3 - 5]7)72
as we see from (181) on putting q = 2y, + 2305 + 240,

In case m — 1 is negative it is necessary first to multiply (179) by the product
1 (4 + ) before putting — ¢ equal to a latent root. Then, on making ¢ = —t,,
we find only the point ¢,, which shows there are no right lines in the plane [¢,¢5q.],
and which indicates multiplicity of the curve at the united points.

45. Just as the equation of the tangent line was obtained in the last article from
that of the curve, the equation of the osculating plane may be written in the form

g=(f+u)(f+s)(f4ty=2a . . . . . . (184);

where ¢ is supposed to remain constant, while s and » vary together. It is easy to
verify that this plane contains two consecutive tangents to the curve.
The reciprocal of the plane is the point (compare Art. 5)

p=(f+1) ", o =[a,fo,fPa] . . . . . (185);

+ (183),
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and consequently the cuspidal edges of the reciprocals of curves of the family (176)
belong to a similar family obtained by altering « into @ and f into its conjugate.
Also the sum of the exponents m for a curve and the cuspidal edge of its reciprocal
is equal to 2.

The developable formed by the tangents to the new cuspidal edge is

=(f+)f +0)7 . . . . o . . (186);

and it may be worth while to verify directly that lines of this reciprocal developable
are reciprocal to the corresponding lines of (179). Also lines in a united plane
reciprocate into lines through a united point of the conjugate function; so that we
can assert that the number of lines of the developable of a curve whose exponent
is m which lie in a united plane is the number of lines of the developable of a curve
whose exponent is 2 — m which pass through a united point.

46. The points (s) in which an osculating plane (184) at (f) cuts the curve again
are found by combining this equation with (176} and putting

Sqp = 0 = S(f + sya(f + t)p"a’ = S (f+ )" (f+ sya . . (187).

In this, when we use the expression (178) for ¢ and when we observe (185) that

a = [afaf’a] = 2[quqsq] (b — L) (b — t) (B — ) . . . . (188),

equation (187) becomes

t ;
S ﬁé jrrj))( L s — 1) (s —t) (= 1) =0 . . . . (189).
The points at which the plane meets the curve four times are determined by
S (6 F o)ty —t5) (ts — t) (ta—t) =0 . . . . . (190).

SECTION VIIL

Tar DisstctioNn oF A Lintar FuNcorion,

Art. Page
47. f=Fg when F=T, g = Coe O 11
48. Condition for the reductlon J=FR when h =7 ( ) T 25T
49, Reduction of ¢ to GR when G2=1. . . . . . . . . . . . . . . . . . 258
50. Reduction of an arbitrary function f FGR. . . . . .. o . . . . . . 258
51. Reduction of a function to a product of self-conjugate functlons . . . . . . . 2B8

47. In addition to the decomposition of a function into its self-conjugate and
non-conjugate parts by addition and subtraction, there is another very useful
resolution by multiplication and division analogous to TArr’s resolution of a linear
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vector function into a function representing a pure strain following or followed by

a rotation.
Multiply any function into its conjugate, and write

=T . .. (191),

where F 1is the self-conjugate function whose double operation is equivalent to the
operation of the self-conjugate function ff” (Art. 36).
Introducing a new linear function ¢ and its conjugate ¢’ defined by the relations

JS=Fg, ff=9gF or g=F"f,¢=,F"1 . . . . (192),

it appears that this function is the inverse of its conjugate, for

gg=1=g7 . . . . . . . . . (198)

is a consequence of the equations of definition.
The geometrical property of this new function is, that points conjugate to the unit
sphere remain conjugate after transformation.
For if
Spq =0, then Sgpgg=Spggg=0 . . . . . (194).
In particular the unit sphere is converted into itself by the transformation.

This transformation is orthogonal, points and planes being transformed by the
same function (Art. 4).

48. On counting the constants, it appears that an arbitrary function f cannot be
reduced to the product of a self-conjugate function and a conical rotator

R=7r()rY, R=R-1=+"1()r. . . . . . (195),

there being sixteen constants in f, ten in ¥, and thrde in R.
In order to determine the conditions, observe that by the last article

=" if f=FR, and RR'=1 . . . . . (196).

Now I say that if a scalar remains w scalar after the operation of R, the function
ts a conical rotator. For then

SRp =8SpR(1)=0 . . . . . . . . (197),

and therefore R'p or Rp remains a vector whatever vector p may be; and, moreover,

the angle between any two vectors is unaltered by the transformation.*
Thus the condition required is simply

JSA)=F (), where F=yf . . . . . . (198);
and when the reduction is possible it is generally determinate.

* Compare the Appendix to the New Edition of HamirtoN’s ¢ Elements,’ vol. ii., p. 366.
VOL. CCL—A. 2 L
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49. A function which is the inverse of its conjugate is in general reducible in an
wnfinite variety of ways to the product of a self-conjugate function and a rotator.
Because g9’ = 1 in the notation of Art. 47, the conditions (198) that ¢ should be

reducible are
g(1)=G(1), where G*=1,G=0G" . . . . . (199),

for simplicity writing
L4+g()=a 1—g(O)=0. . . . . . . (200);
1t 18 evident from the last equation that

Go=ua, Gh=-—0>, Sab=0 . . . . . . (201);

so a and b are united points of G, and conjugate with respect to the unit sphere.
Take any point ¢ in the polar plane of b, and any point d in the polar line of ac ;
and assume '

Ge=c, Gd=—d . . . . . . . . (202);

then the function determined by the four relations (201) and (202) is self-conjugate,
and its symbolic equation is G* — 1 = 0. By the construction it follows that

Sab = Sbc = Sad =8cd =0 . . . . . . . (203),

‘and the function is consequently self-conjugate.

We have now determined a self-conjugate function, one of an infinite number,
which satisfies (199), and the proposition is proved.

The rotator corresponding to G+ is of course

R:G—lngg . . . . . . . . . (204).

50. The results of recent articles establish the possibility of reducing an arbitrary
function to the form .
Jf=FGR . . . . . . . . . . (205);
where F, G, and R satisfy the equations
P =f, Ff(1)=G(1), G*=1, R=GF-'f. . . (206);

and by analogous processes the function may also be reduced to other forms such as
G, IR, but on these we need not delay. '

51. An arbitrary function may be reduced to a quotient or product of two self-
conjugate functions.

Assuming

JS=E"10 0 0 0 0 0 00 L0 (207),
it appears that the united points of f* (compare Art. 30) satisfy the equations
Fio=¢Fua;, Fb=tFb; Fe=tFe; Fd=t¥d . . (208);
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but on the supposition that I, and F, are self-conjugate, it follows (135) that these
united points form a tetrahedron self-conjugate to the two quadrics SqF,q = 0,
S¢F,q = 0. Take therefore any quadric to which this tetrahedron is self-conjugate ;
F, is determined and F, follows trom (207).

Otherwise the function

F, (¢) . (abed) = xa’ (qbed) + yb' (aged) + 2z’ (awbqd) + wd’ (abeq) . (209)

is self-conjugate (Art. 21) when (¢/0°¢’d’) is the tetrahedron reciprocal to (abed) ; and
on comparison with (208) the function F, may be written down. The four scalars
x, y, 2, w are arbitrary, as might have been expected, since each self-conjugate
function involves ten constants, while f involves sixteen.

If two functions can be simultaneously reduced to the forms

Si=F'F, fo=F"1F . . . . . . . (210),
the united points of f, and f, must form tetrahedra self-conjugate to a common
quadric, or

Fa, =, [bed,], &e. Foa, = 2,y [bycody], &e. . . . . (211).
In this case the eight united points are so related that any quadric

SqF3(]=O..........(212)

which passes through seven, passes also through the eighth.
The condition that the point @, should be on the quadric may be written (211)

Sa By, F=1 ey d ] =0, or (FFua, b,e,d)=0 . . . (213),

and if' by, ¢}, and d, are likewise on the quadric, it follows (Art. 24) that the first
invariant of the function F~1F; vanishes. Hence if the points a,, b,, ¢, are also on
the quadric, the remaining point d, must lie on the quadric too.* Thus one of the
united points is fixed with respect to the others, and the functions Jiand f, must
satisfy three conditions, which reduce the number of their constants to 29, and this
is precisely the number involved in the two quotients F~'F,, F~1F,.

* Compare Appendix to the New Idition of the ¢ Elements of Quaternions,’ vol. ii., p. 364.

2 L2
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SECTION 1X.

Tae DETERMINATION O0F LINEAR TRANSFORMATIONS WHICH SATISFY CERTAIN

JONDITIONS,

Art. - Page
52, Transformations converting one given quadric into another. . . . . . . . . . 260
53. The transformations of a quadric and a linear complex into themselves. . . . . . 260
54, The conditions that it may be possible to transform simultaneously a given quadric

and a linear complex into another given quadric and a linear complex . . . . . 261
55. Transformations converting one conic into another given conic. . . . . . . . . 262
56, The condition for the simultanecous transformation of two conics into others . . . . 262
57. One twisted cubic may be converted into another with arbitrary correspondence of the

points . . . . . o 0 e v e e e e e e e e e e e wo.o. 263
58. The condition for the conversion of one unicursal quartic into another . . . . . . 264

52. The results of Art. 47 afford a simple solution of such problems as to find a
transformation which shall convert one quadric into another.
Symbolically this problem amounts to solving the equation

Fo=fF7 . . . . . . . . .. (219

which connects two known self-conjugate functions F, and F, with an unknown

function f and its conjugate.
The first quadric is reduced to the unit spheve by the transformation

¢ = Flq, sothat S¢¥yg=5¢* . . . . . . (215)
The unit sphere is converted into itself by the transformation (Art. 47)
q, = gq), sothat S¢* =S¢ if gg'=1 . . . . . (216);
and finally the sphere is converted into the second quadric by the transformation
qs = Fylqy, s0 that 8¢, =S¢sFoqy . . . o . . (217).

Thus the transformation
F=F"gFE g =1 . . . . . . .. (218)
converts the first quadric into the second; and evidently this is the most general

transformation fulfilling the conditions.
53. To convert an arbitrary function " into itself, observe that the transforma-

tion must belong to the group (compare (218)),
F =f"%f; where f=/,+f, 99/=1. . . . . (219),

which converts the self-conjugate part f; of the function into itself.
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The problem therefore reduces to the determination of ¢ from the equation
(compare (214))
, R e ¢
So=S0Y ST (220)
The form of this equation suggests the new function

Su=LTS0 S =00 0 000 (221);

and the equation (220) reduces to

.f;/:gif./19011g.ﬁ/:f//g e e e e e ('222);

and the problem reduces to the determination of a function ¢ commutative with the
known function f,,. '

The function g must possess the same™ united points as f,; or ¢ must be of the
form (compare (221)) ‘

g=w+yf,+ 0wl g =w—uf, A0 —wfp oo (223).
Actually multiplying these expressions we find (219)
99 = 1= (@ + )~ W, +w? . . . . . (224);

and as this equation must be equivalent to the latent quartic of the function f,,
it must vanish when for f, are substituted its latent roots. Now (Art. 23) the
latent roots of f, are identical with those of f,, and the latent roots of the latter

function (Art. 12) are of the form 4 Vs, v — . Substituting and® reducing,
we find in terms of the two invariants n,” and =, of f,, two equations

1=+ n, (2yw — 2% — n/"w?),
0 =2xz = y° + n/ Qyuw — 2> —=n/w?) +nw* . . . . (225)

connecting the four scalars , ¥, z and w. Hence, reverting to the original functions,
the transformation

F=a4y/ 7o + 2070 w0 - o o (226)

converts the function f into itself; in other words, it converts the quadric and the

linear complex ‘
Sqfeg =0, Spfg=0 . . . . . . . . (227)

into themselves.

54. Passing on to the general case, let us consider the relations which must be
satisfied when one function f can be converted into another F; or the conditions
that a quadric and a complex can be simultaneously converted into another given
quadric and another given complex.

* Compare Art. 38, and the Appendix to HaMILTONs ¢ Elements,” vol. ii., p. 364,
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The first quadric is converted mto the second by the transformation (218)
fo % foh and this converts the first complex into

Sp. ¥oafo™ f S B (228)
and, on comparison with the second complex, it appear that we must have
FO%{F/FOM!i = ,C/fo_‘%if/fo_zt‘//s or F// = g.f//gul oo e (229)’

where we have introduced two new symbols for greater convenience.

Equation (229) requires the functions ¥, and f, to have the same latent roots
(Art. 23); or again, F;7'F, and f;7'f, must have the same latent roots, and this is
the sufficient condition, for it appears, on substituting a united point of F, in (229),
that the function ¢’ must convert the united points of ¥, into those of f,; and it
is always possible to find a function ¢ capable of doing this, because (Art. 12) the
united points of the two functions are quadrilaterals upon the unit sphere, and a
function ¢’ always converts this sphere into itself.

Thus, given two quadrics and two linear complexes, it us possible to transform
simultaneously one quadiic wnto the other and one complex into the other whenever the
latent roots of the functions f,~f, and F,~'F, are proportional.

55. To find a transformation which shall convert one conic into another.

The essentials of the problem are contained in the equation

Sflat® +2bt + ¢) =w(@/s* +20s +¢) . . . . . . (230).
In order that the right-hand number may be a quadratic function of ¢, it is necessary
to have
) wt - .
w = (’U& "l" /U/) "J? &S == —/I“)g‘_‘;';;/ . . . . o . . (231) ;

so that on equating powers of ¢ we obtain, in the usual notation for binary quantics,
Jo = (V'Y uw)?; fb = (VL uV) s fo = (VWP .o (282).

These relations are not sufficient to determine the function ; we may arbitrarily assume
two quaternions d and d’ and write fd = d’ (Art. 3). The function thus determined
involves eleven arbitrary constants, the four w, «/, », ' which regulate the corre-
spondence of point to point on the conics, and the seven (eight less one) involved in the
two quaternions d and d’, for multiplying these by a common factor is without effect.

56. In order to transform sumultancously two given comics wnlo two other conics,
« single relation must exist connecting the conics.

Affixing numeral suffixes, 1, 2, to the various symbols in (232), we obtain the
system of six equations which the function f/'must satisfy. Any six quaternions are
connected by two relations, and the equations
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(8101 + 8919) @+ 2 (1711 + 89Y10) D1+ (51201 + 89710) €4
+ (51791 + Soaa)cta -+ 2 (51901 F $9Y0) by + (81201 + Sy7p0) 0o =0 . (233)

(s + s @yo) oy + 2 (S F 8y ) U+ (507 )
+ (5" + @)y + 2 (51 S ) Uy A+ (517 + §17) ¢y = 05

in which s, s,, 8}, 8’y are arbitrary, but the other scalars given may be taken as
determining the two pairs of relations connecting the two sets of six quaternions.

When the left-hand members of the equations analogous to (232) are multiplied by
8121, + 8419, &c., and added, the sum is zero; and the sum of the right-hand members
is (with an obvious abbreviation)

(812 F 8919, 8111830190 $1711 +32z12][u11)1)20¢’,_ + 21“1”13@5/1”/1)1/1+I“,1v,1)20I1 }
+ {(8179) 4 $y%a9, 191 T+ S3¥a9s S1%01 + 322291?4202)2“/2 + 23(""2”23[“’2"]2) by +

Yo'y Pcyb =0 . . . . . o L o oo L (234),
or, for simplicity,

(5:Xy; + 89X g) 'y + 2 (5,Yy; + 32Y12) vy + (slzll + 3/2Z12) ¢
+ (5. Xg1 4 6,X00) @y + 2 (5, Yo + 8,Y00) Uy A (8) Zgy + 50Z59) ¢/a=0. . (235)

where X, is a quadratic in u, v, and Y,, Z,, its successive polars to w';v’..  This rela-
tion connecting the six quaternions must be equivalent to the second equation (233),
so we may equate corresponding coefficients of quaternions, when we shall obtain six
equations linear in s, s, 81, 85, Let s, and s’y be eliminated from them. The result
is the system of determinants

HX S+ Xigsy Yyusi+Yigsy Zy8i+Zosy Ko+ Xogsy Yoi81+ Yooy Znsi+Zagss
| 'y Y1 7y g1 Y 2o =0.(236),
| 'y Yo 219 a9 Y 7o
which is equivalent to four equations. But s, and s, are arbitrary ; consequently this
system of determinants breaks up into two independent systems, equivalent to eight
cquations among the eight scalars u, v. The eight scalars enter homogeneously into
the equations, and may be eliminated, leaving a single condition connecting the four
conics, in order that it may be possible to find a transformation which shall convert
two of them into the remaining two.

57. A twisted cubic may be transformed into another twisted cubic with arbitrary
correspondence of the pownls.

The equation of transformation of one arbitrary twisted cubic into another is

(compare Art. 43)
JlabedXt, 1) = (aVd Y ut + o', vt + 0 . . . . . (237).

Hence equating coefficients of #, four equations are obtained which serve to deter-
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mine f for arbitrary values of u, v, 2/, v (Art. 3). These four scalars may be selected
in any way we please.

58. A single condition connects two quarties of the second class™® when it vs possible
to transform one wnlo the other.

The equation of transformation is

S(abedeXt, 1) = (VSN ut o/, we ) . 0 0L (238),

and five equations of condition may be written down analogous to (232).
Let the relations connecting the sets of five quaternions be

xga + dx,b 4 62y + drgd + we =0, y,o/ + 4yl - 6y, + dyd +y =0, (239);
then, as in Art. 56 (234), we obtain the equation

X 44XV 4 6X,0 4+ 4Xyd X = 0. . . . . (240),
where

X, = (ggr ey Juo)t o0 0oL (241),

and where X, X,, X,, and X, are its successive polars to u'v/,
On comparison of (240) and (239) the equality of ratios

Xo o X X Xy X,
Yo Y1 Y Ys Yy

e

L (249)

:,-._

)

kS

is seen to be necessary. This is equivalent to four quartic equations in the homo-
geneous variables u, v, 1/, ¢/, and the resultant of these four equations equated to
zero 1is the single condition in question.

SECTION X.

COVARIANCE OF FUNCTIONS.

Art. Page
59. The eight types of covariance. . . . . . . . . . . . . . . . . . . . 2064
60. Special cases in which the types coalesce . . . . . . . . . . . . . . . . 265
61. Second general method of obtaining covariant functions . . . . . . . . . . . 266
62. The Hamiltonian invariants and the method of arrays . . . . . . . . . . . 266

59. The subject of covariance naturally arises in connection with the various
transformations lately considered, but as the principles laid down in the note on
Invariants of Linear Vector Functions printed in the Appendix to the new edition of
‘ Hamilton’s Elements’ apply with but slight modification to the more general case of
quaternion functions, it does not seem desirable to go into any great detail.

* A quartic of the second clags is the partial intersection of & cubic and quadric surface, and only onc
quadric can be drawn through it.
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We propose to obtain functions from given functions f,, f,, f; &c., which fall
into certain classes connected by invariantal relations. We denote two arbitrary
functions by the Roman capitals X, Y, and we consider the transformations
effected by multiplying a given function by X and into Y.

This transformation changes the series of functions

Jo Lo Jo oo W o ALTSRST s o0 (243)

into the series
XAY, XY, XAY, o XALTAY,  c XALTLLTAY L (244);
and we shall speak of this as the (XY) class.

The series v
SN ST AT ATV AT SSTVASGT L (245)

becomes

Y17, 71X- YA 1X Y-lf, XA L YL A AKX L

YOUATVSTASTXT L (246),
and this is the (Y=, X-1) class.

The szries
Sifs S o AT s (247)

is the (XX1) class, transforming into the series

XALTXY XAALTIXL L XALYATXT D 0 (248);
and finally the series
SV BN oo WAL M - - o o oL (249)

forms the (Y 1Y) class, as it transforms into

Y-UAAY, YOUATUAY, L YCUATLAATUAY L L L (250).

Inverse functions of the (XY) class belong to the (Y~?X~1) class, and conversely ;
inverse functions of the classes (XX 1) or (Y~'Y) belong to their own class, and so
also do products and quotients of functions of these classes. The product of an
(XY) function into a (Y ~1X 1) function is an (XX ~!) function, and so on.

In like manner there are four classes for the conjugate functions, as appears on
taking the conjugates of a typical function. The annexed scheme exhibits the eight
classes, the conjugates being printed under their correspondents : —

(XY), (YX7) (XX, (Y1)
(VX)) (X-1Y/-1) (XX (YYSY) L. L .. (251).

60. When we deal with quadrics or complexes, or when the condition is imposed

that self-conjugate functions remain self-conjugate, the classes of the conjugate type
VOL. CCL——A. 2 M
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coincide with those originally found, but in a different order. In this case Y is the
conjugate of X, and the scheme (251) becomes

(XX (XI—1Xh (XX-1) (X/~1XY)
(XX") (X=X (X=X (X X7YH) oo L (252).
In this case the conjugate of a transformed function is the transformed function of
the conjugate.
Again, in the general case, when Y = X%, the types of the upper row (251)
merge In the single type (XX 1), and the conjugates in the type (X'1X/).
Finally, all types unite in the single class (XX’) when X is the inverse of its
conjugate (Art. 47).
61. Covariant functions may be derived by the following general process, as well
as by multiplication and division. For arbitrary scalars, ¢, ¢, ¢;, &ec.,
ny (Stf) " abe] = [Stf'a, Stf'b, Stf'c] = Sttty Figlabe] . . . (253),

where 7, 1s the fourth invariant of 2¢f, and where

Flabe] =3[ fla, /b, flse] o . o . . . (254),

the summation in this last equation referring to permutation of the suffixes.
These functions belong to the (Y 1X 1) class, because

2 [Y{fllx,a’a YT/QX/ba Yf][ISX/c] = nYY - 1F1237LXX =1 [abc] . . . ( 255 ),

nx and ny being the fourth invariants of X and Y.
In like manner functions of the (XY) class are obtainable in the form

Faslabe] = S[FVa,FOF); FY[abe] =[ fio, b, fidl . . . (256)

62. Although rather foreign to the subject of this paper, it may be as well to indicate
the nature of the Hamiltonian quaternion invariants of a system of functions. It
was stated in a paper on Quaternion Arrays* that these invariants are included in
the quotient

[ fia fib fie fid )
Jau Job S Sl

< ' o o (abed) . .. (257),

W b fue fud
a b ¢ d

~

formed by dividing a four-column array by (abcd), each row of the array consisting of
the results of operation by a single function on four arbitrary quaternions. Briefly,

* «Trans. Roy. Irish Acad.,” vol. 32, p. 30.
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a quaternion array may be defined as a function which vanishes if, and only if, the
constituents of every row can be linearly connected by the same set of scalar multi-
pliers. It is multiplied by a scalar if every constituent in a column is multiplied by
that scalar; and the sign of the array is changed if contiguous columns are trans-
posed.

These laws are precisely the laws which govern the function («bed), which is in
fact a one-row array, so that if in (257) we replace any one of the four quaternions

by any quaternion za + yb + zc 4 wd, the quotient remains unchanged. The
quotient is therefore an invariant in the Hamiltonian sense ; it remains unchanged
when the four quaternions a, b, ¢, d are operated on by the function Y.

If we regard the lowest row as consisting of the results of operating by the
special linear function unity on «, b, ¢ and d, and if we replace f,, f, . . . f, by XA Y,
XY, ... Xf,Y and unity in the last row by XY ; to a factor, nyny, the quotient
becomes the corresponding quotient for the system of functions

XAX,"L XAXL .. XAXL

SECTION XL
TaHE NUMERICAL CHARACTERISTICS OF CERTAIN CURVES AND ASSEMBLAGES
or Poinrs.

Art. ' Page
63. The number of points represented by {Qi, Qz} =0, Q, being a quaternion function of ¢

oforder M,, . . . . . . . . . . . . . . . . ..o
64. The order and rank of the curve [QiQ:Qs]=0 . . . . . . . . . . . . . . 267
65. The order and rank of the curve ((QiQ:QsQ:Qs))=0 . . . . . . . . ... 269
66. The number of points represented by (((QiQ2QsQsQ:sQe)))=0 . . . . . . . . . 270
67. Conditions for the vanishing of the system [[Q1Q:QsQ4]]=0 . . . . . . . . . 270

- 63. In order to facilitate future investigations, we shall determine the numerical
characteristics of certain curves and systems of points which frequently occur.

Using the symbol Q, to denote a homogeneous quaternion function of ¢ of the order
M,, it appears from SALMON’S chapter on the “Order of Restricted Systems of
Equations ” in his ¢ Modern Higher Algebra,” that

{QQ} =0, or t,Q,+tQ,=0 . . . . . . (258)
represents a system of points whose number is
M2 4+ MM, + MM24+ M2 . . . . . . . (259)

64. In like manner the chapter cited enables us to write down the order of the
curve represented by

[QiQQ3] =0, or ¢Q,+ tyQy +6,Q=0 . . . . (260) ;
2 M 2
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but as it is desirable to determine also its rank and the number of its apparent double
points, we shall adopt a different method.
The quaternions a and b being arbitrary, the identity

Q1 (QQsa0) + Q, (Rl Q) + Q5 (abQ, Q) +- a (DQQ,Q,) 4 b (QQQue) = 0 . (261),
shows that the two surfaces
(QQQs) = 0, (MQQQy) =0. . . . . . . (262)

intersect in the curve (260), and also in a complementary curve common to the three

surfaces 7
(@DQyQs) = 0, (4dQyQ)) = 0, (WbQQ)=0 . . . . (263);

for when (262) is satisfied, the identity shows that either (260) or (263) must be
satisfied.
Let m denote the order of the curve (260) ; then the order of the complementary is

(M, 4+ My M) —m=m' . . . . . . . (264),

the orders of the two surfaces (262) being M, ++ M, -}- M,
Again, considering the intersection of the second and third surfaces (263), it follows
from the identity that they intersect in the complementary curve and in the new

curve
[Qab]=0 . . . . . . . . . . (265);

and because the orders of the surfaces are M, + M, and M, 4+ M,, the order m, of
this new curve is connected with m’ by the relation

(M, +M)(M, 4+ M) =/ =m, . . . . . . (266)
Again, writing down the identity
a (beqQy) + b (cqQua) + ¢ (qQab) + ¢ (Quabe) + Q, (abeq) =0 . (267),
in which ¢ is the variable quaternion, while a, b and ¢ are constants, it appears
exactly as before that the surfaces
(abgQ) =0, (abeQ) =0 . . . . . . . (268),
of orders M, + 1 and M|, intersect in the curve (265) and in a complementary curve
which is obviously the complete intersection of the surfaces
(abeq) =0, (abeQ)=0 . . . . . . . (2069);
that is, a plane and a surface of order M,.
Now the relations®

* SALMONs ¢ Geometry of Three Dimensions,” Arts. 345, 346.
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Q=)= (m =Y (p—=1)(p—1), 7=t = (m—m)(ptv—2) . (270)

connect the number of apparent double points (%) and the rank (r) of a curve with
those of its complementary in the intersection of two surfaces of orders u and ». But
we know the characteristics of the plane curve (269) to be

m/ =M, /=M M -1), h/=0 . . . . . (271);

/

and hence we find the characteristics of its complementary (265),
mo=Mp2 7, =2ME(M, — 1), 2h =M, —1) . . (272);
‘and these in turn give the characteristics for the curve n//,
m =3,; 1 =3,(3 —2)+3;; 2W =35, -3 +1)—3; . (273),
and, finally, for the original curve (260) we have
m=3P2=3; r=23°—333, 43, —2(E>—3);
2h = (32— 2, — (282 — 383, 4 3) + (35 —3,) . (274),

where 3, 2, and 3, are the sum, the sum of the products in pairs, and the product of
the three quantities M;, M, and M,
As examples, for the twisted cubic

LAgfga]l=0. . . . . . . . . . (275),

M] =M2= 1, M3= O, ‘dl’ld 21:23 2
For the curve

s =1, 3, =0, so that m =3, r=4, h = 1.

~

[fgfafil =0 . . . . . . . . . (276),
$,=383%=83%=1;andm=0,r=16,h=7.

These numbers admit of course of simple verification.™

65. In like manner proceeding one step further we calculate the characteristics of
the curve common to the five surfaces obtained by equating to zero the coefficients in
the identity

Q1(Q3QUQ4Q ) + Qz(Qsan«%Qﬁ + Q3(Q-LQ5Q1Q2) + Q{(QonQzQs) + Q5(Q1Q2Q3Q+)
=0. .(277)

mo=SM,M, &=3SMSMM,+SMMM, —2sM,M,. . . (278);

to be

this curve being the complementary of (260) for the fourth and fifth surfaces.
The curve common to the five surfaces may be conveniently designated by the
equation in double brackets

I ¥ The expression for the rank of a curve, ‘Modern Higher Algebra,” Art. 284, seems to require
modification. ' .
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((QQQQQ) =0 . . . . . . . . .(279)

which is intended to denote that every set of four of the included quaternions is
linearly connected.

66. For the number of points common to the surfaces whose equations are
obtained by deleting two of the quaternions included in triple brackets

(((Q1Q2Q3Q4Q5Q6)))= o . . . . . . L. (280),
Sarmon’s formula (¢ Modern Higher Algebra’) gives

N=zsMMM, . . . . . . . . . (281).
67. To complete the scheme, we may regard the equation

[QQQQ]=0. . . . . . . . . . (282),

as requiring the four quaternions Q;, Q,, Qs Q, to be collinear; or the four curves
(260), obtained by omitting one quaternion, to have common points. If these points
exist they satisfy the equation (compare (279))

((QQQ)) =0 . . . . . . . . . (283),

or lie on the complementary common to the five surfaces.
A curve meets its complementary (‘ Geometry of Three Dimensions,” Art. 346) in

t=m(p+v—2)—r. . . . . . . . .(284)

points, and in particular for the curve [Q,Q,Qs] and the two surfaces (¢Q,Q,Qs) = 0,
(Q1Q:QsQ,) = 0, we find the number to be (compare (274))

t4_ —_ 2122 — 23 "I" M4, (212 — 22) . . . . . . . (285).

These points are generally variable with the arbitrary quaternion a.
Again, the surface

(aQ,Q:Qs) (bQ,Q,Q,) + u(aQ,Q,Q,) (OQQQQ:) =0 . . . . (286)

intersects (Q;Q:Q:Qu) = 0 in [Q,Q,Q;] = 0, [Q,QQ,] = 0, and in the complementary
corresponding to b.  When we seek the intersection of the curve [Q,Q,Q,] = 0 with
its complex complementary on this surface, the number of points is found to be
2t, -+ M;® + MM, + M, M,* + M,?, and these can all be accounted for by (285) and
(259).

We can also in this manner determine the points common to the two complemen-
taries (283) answering to ¢ and b to be SM,M,M;, employing the characteristics (278),
and putting M; = 0.
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SECTION XTI

ON THE GEOMETRICAL RELATIONS DEPENDING ON Two FUNCTIONS AND ON THE
7
Four Fuxcrions f, f7, f, and f,

Art, Page
68. Relations of the quadric S¢fyg=0 and the complex Spf,g= 0 to the linear transformation
produced by the function f . . . . . . .o 1 6 |
69. The quadrilateral common to the quadric and the hnear eomplex e e 272
70. The gquadratic complex of connectors of points and their correspondents o272
71. The extension of HAMILTON’s theory of the “umbilicar generatrices” . . 273
72. The locus of the united points of functions of the system (#/ f + o f +2)71 (ocf + Jf +z)
is the twisted sextic [ fg, f'g, ¢]=0 . . . . . . 274
73. The case in which f and f are replaced by arbltrary func‘olons The sextic intersects a
united plane of the system in three residual collinear points. . . . . . . . . 274
74. The numerical characteristics of the sextic . . . . . . . . . . . . . . . 275
75. The surface generated by its triple chords . . . . ... 275
76. The satellite ¢=2afia + yfoa of a point a, and the quadratlc complex of Qa,telhtes ... 276
77. Satellites and triple chords of the sextic . . . Ve e e e e e 218
78. An arbitrary plane contains one point and its satelh‘oe Y
79. The focus of a plane. Case of a united plane . . . . . . . . . . . . . . 217
80. Special case for the functions fand /" . . . . . . . . . . . . . . . . . 278

68. We devote this section to the study of the geometrical relations connecting
a function f with its conjugate f, its self-conjugate part f; and its non-conjugate
part f, (Art. 9), and to the relations connecting a pair of arbitrary functions f;

and f;.
The quadric

Sefqg=8qf'q=8qfq. - . . . . . . .(287)

is the locus of a point which is conjugate with respect to the unit sphere to its
correspondent in each of the transformations due to f, /" and f.
The linear complex

Spfiq = 0, or Spfq = Sqjp, or Spf'q =8qf’p . . . . (288),
may be written in the form (compare p. 223).
SrQ'Sfq = SqrSfe, (PSp=p, PSfp=/r). . . . . (289),

which expresses that the product of the perpendiculars from q’, the derived of one
point @, and from the centre of reciprocation on the polar plane of another point P
with respect to the unit sphere, multiplied by the perpendicular (SfQ) from @ on the
plane which is projected to infinity by the transformation, is equal to the correspond-
ing product of three perpendiculars found by interchanging p and Q.  This property
is also true when f is replaced by its conjugate f”.
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The equation of the complex may also be regarded as representing the assemblage
of lines converted by f, into conjugate lines with respect to the unit sphere.

69. In order to determine the four lines common to the quadric and the linear
complex, observe that the point of contact (f,~'4) of a plane Shqy = 0 with the
quadric must also be the point of concourse (f,7'2) of the lines of the complex in that
plane, in order that the plane may contain lines common to the two assemblages.
Therefore the points e in which the pairs of common lines intersect satisfy the

equations
e=fM=uy T, orh=Ffe=ufe . . . . . (290).

Thus four points e are determined, the united points of the function /7.

It appears, as in Art. 12, that the latent roots of this function are equal and
opposite, and that the united points form a quadrilateral on the quadric.

Otherwise, the invariants of f,7!f, and of f, f,~! are identical (Art. 23), and these
functions satisfy the same symbolic quartic ; and because their conjugates, — f,f,
and — f;7!f, likewise satisfy the same quartic, 1t must be of the form

(o) + N + N =0, o (7)) = ) (/) — ) =0 . (291).

Hence the lines in question are determined on solution of a quadratic equation.
When these four points ¢, ¢';, ¢,, ¢/, are taken as points of reference,* so that

= re tyey | ze fwdy ey Ayl | dey 4wy (292)

U= 8, T Sty T SSe Sy T Sy

the equations of the quadric and complex may by the aid of (290) (compare again
Art. 12) be reduced to the forms

@y + 2w =20 uy (xy' — &y) +uy(z) —Zw)=0. . . . (293).

70. The locus of points whose correspondents arve in perspective with a fixed
point « is the twisted cubic

Jo+tg=a or [fy,q al=0 . . . . . . . (294),

and the locus of lines which pass through a fixed point ¢ and coancet a point and its
correspondent is the cone

Jq+tg =afa 4+ ya or (fygfoea)y=10. . . . . . (295).

* Observe that these four points ¢ are the only points for which

Jo=/0 =z Ja= T

the signs = being used to denote equality when the quaternions are multiplied by a suitable factor. For

vector functions '
) , bp=§p=cop
only when p=e¢, where ¢ i the spin-vector.
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The complex of lines connecting points and their correspondents has for its

equation™® (fppfa) =0 . . . . . . . . . (296);

and the locus of points whose connectors to correspondents intersect a fixed line ab is

the quadric surface
(fgqab) =0 . . . . . . . . . (297)

The reciprocal of the complex (296) is the complex of the conjugate

(F'ppfag)y =0 . . . . . . o . . (298);
for the line p'q’ is reciprocal to the line p, fp if Spp’ = Spg’= Spf’p’ = Spf'q’ = 0,
which requires p/, ¢, f'p’, '¢’ to be coplanar.

The formulze of this article comprise many theorems with respect to the normals
of confocal quadrics. It may also be observed that the complex (296) is unchanged
when f'is replaced by (/4 x) (f+ ).

71. An arbitrary quadric has elght generators whicl connect a pornt and its
correspondent in an arbitrary transformation. This is the extension of HamirTox’s
celebrated theory of the umbilical generators. (Compare Art. 40.)

The conditions that the line ¢ = fu - sa should be a generator of the arbitrary

quadric surface '
SgFg=0 . . . . . . . . . . (299)

Sal¥a =0, Sa(f'F + Ffa=0, Saf'Ffa=0. . . . (300);

so that we can determine eight points @ as the intersections of three known quadrics,
and the lines joining these points to their correspondents are the common generators
of the complex and the quadric.

Four of these lines are generators of one system of the quadric and four of tle
other system.

Four of the lines must belong to one system of generators. Let these be
determined by the points @, a,, s, a, The condition that the line pg should
meet the line o, fu, is

(pgayfu) =0 or S(pq)[ayfe,] +S[pg](a fa))=0 . . (301);
and because any line which meets three of these four lines likewise meets the fourth,
we must have for proper selection of the weights

(@) A (o fug) - as forg) +(eny fa) = 0, [ fioy ][y fug 4 [y fug] 4+, fu]= 0 (302).
* When we refer p and ¢ to the united points of f, the equation of this complex takes the forms
2 (baty+ bity) (92 = y2) (o' — 2'w) =0, 2 (ty ~ ts) (b — by (yez'w + y&aw) =0,
P=xa+yb+ze+wd, g=aa+yb+ e+ wd.

are

where

A vector equation may also be employed, for if we put p=1+a, g=p+p, the equation of the complex
may be replaced by

(f+) p=u(f+s)(1+«), or p=v(V(f+) T (1+a)-aS(f+)1(1+a)),
when we eliminate s by separating the scalar and vector parts after inversion of /4.
. VOL. CCL—A. 2 N
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Hence the eight points common to three of the quadrics

(g fqa, f,) = 0 (n=1,2,8004) . . . . . (303)
are likewise common to the fourth. But four of these points are the united points of
the function f, while the remaining four determine (297) four lines of the complex
(296) which meet the four generators. These four lines are common to the quadric
and the complex, and make up with the other four the complete system of eight lines.

In accordance with (302) we may write for the two sets of four lines*

{an fon}+{ag fag} 4 {ag fag§+ {o, fo,f =0,

{1 oy H{dy foly} - {os fl sy R fuly b =0 (304)7
and it may be remarked that a direct interpretation of (302) is that four equilibrating
forces can be placed along the lines of either set, for the first equation (302) expressed
that the resultant of four forces vanishes, and the second requires their moment with

respect to the centre of reciprocation to be zerof (see (33), p. 230).
72. The locus of the united points of all functions of the system

@f+yf +) N oy (309)
[faflaq]l=0. . . . . . . . . .(306);

and this curve (276) is a sextic whose rank is 16, and the number of whose apparent
double points is 7.

If ¢ is a united point of a function (305) and ¢ the correspondmg latent root, we
obviously have

is the curve

= ) fi 4 =) Py — g =0 . (307),
whence (306) follows immediately.
The sextic curve is evidently the locus of united points of the eon]ugates

()" + uf + 2) of functions af + 4’ -+ 2z, but it is not the locus of united points of
conjugates of functions of the general type (305).

In the following articles we shall consider some part of the theory of two arbitra,ry
functions f, and f,, as it is partially applicable to the subject under discussion.
73. The loci of the united points of all functions of the two systems

@+ 9o+ ) @A ufs ) and @F S 4 )7 @f 4 i =) (308)
are respectively the sextic curves

LAafaq9] = 0, [Aaflagl=0. . . . . . (309).
These two curves unite in the special case of f, = f}’. The first is the locus of the
united points of the system af, + yf, + 2, and the second is the corresponding locus
for the conjugate system.
* Tn the notation of arrays = { ppg,} =0 implies = (pagn) = = [ pagn] = 0.
T I an = ApStp, fan=BpSftny Ap=1+ay, By=1+ 3, the equations (302) become
2 (B~ an) SaaSfon=0; ZVanS,8a, 8, =0.
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The locus of the united planes of the system xf| -+ yfy, + 2z s the reciprocal of the
conjugate sextic.

By the conjugate sextic we mean the second curve (309), and the proposition is
obvious when we reflect that a united plane of a function is the reciprocal of the
corresponding united point of its conjugate (Art. 8).

The united plane of a function of the system af, 4 yfy + z cuts the sextic vn three
wnated points and in three other collinear points.

The equation of a united plane of the function zf| + yf, 4 # is Sa'q = 0, where o’ is
a united point of the conjugate. Writing the equation of the sextic in the form

g+ yfg+Yde=0. . . . . . . . (310),

and expressing that ¢ lies in the plane, the result is

Sq (&f/a’ + fla) = 0, ox Sq (&' — s3) /o, + (yf = sy)fia) =0 (311),
where s 1s arbitrary, because xf,'a’ 4 yfy ¢’ + za’ = ta.
“Hence either @/ =, ' = y, and ¢ is a united point of the function, or else

Sga/ =Sgfy o/ =8qffa’ =0 . . . . . . . (312);
and the three remaining points are collinear.

- In particular for the functions f, f’, f, f,, the polar plane with respect to the
quadric and the plane of rays of the complex, corresponding to the reciprocal of a
united plane of the function f; intersect in that united plane ; and their common line
is a three-point chord of the sextic (306).

74. Knowing the rank and number of apparent double points of the sextic, its
characteristics are

r=16,m=0,1n=30,a =48, B=0,0=96,y =72, g =355, h=17 (313),
as may be verified by the formulee printed in Arts. 326-7 of SAaLMoN’s ¢ Geometry of
Three Dimensions.” Also the deficiency of the curve is D = 3.

- These numbers apply reciprocally to the developable of the last article generated
by the united planes. Thus the order of its cuspidal curve is 30, and six united
planes pass through an arbitrary point, while sixteen pass through a line.

Through a united point the six united planes consist of the three planes which are
united planes of the function possessing the united point, and three other planes
intersecting in a common line (compare (312)) which is the reciprocal of a three-point
chord of the second sextic.

75. The triple chords of the sextic generate « surface of the eighth order.

The three-point chords of a curve generate a surface of order (‘ Three Dimensions,
Art. 471)

m—=2)6h4+m—m?). . . . . . . . (314),
and this reduces to 8 in the present case.

The characteristics of the cone, whose vertex is a pomt on the sextic and which

contains the sextic, are deducible from the data of Art. 330 of the ¢ Geometry of Three
2 N 4
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Dimensions.” The cone has & — m 4 2 double edges, and consequently three triple
chords pass through an arbitrary point on the sextic. The sextic is thus a triple
curve on the regulus of triple chords, and the surface has no other multiple line.

76. There is yet another quadratic complex of importance in the study of a pair of
functions. A point a is transformed into zfja + yf,a by the operation of af, + yf;,
and as x and y vary, the locus of the transformed point is a line which we shall call
the satellite of a.

The satellites generate the complex

(S e T ) =000 0 0 000 (315),
and the form of this equation should be compared with (296) and (298). There is
also the complex of conjugate satellites obtained by replacing f and f, by their

conjugates, but when the functions are self-conjugate, or when one is the conjugate
of the other, the two complexes combine into one. For the functions f'and f” this is
(fpfpfqflq)=0 . . . . . . . (316).

The four points fu, f'a, fy, fo form a harmonic range on the satellite of the point a.
There are also harmonic properties connecting pencils of planes Sqfu = 0, Sq¢f'a =0,
Sqfor =0, 8qfa=0; and it may be verified that these four planes intersect in a
satellite for the inverse functions. This we shall prove for the general case.

The reciprocal of the complex of satellites vs the complew of the conjugate satellites
Jor the inverse functions.

If p and ¢ are any two points on the reciprocal of the satellite of «,

Spfie =Spfha =0, Sqfie=8¢fia=0. . . . . (317),
and on taking conjugates we see that the four points fi'p, fip, fi'q, fi'q are

co-planar, so that .
N afig=0 . . . . . . . . (318)

The locus of points whose satellites meet the line ab is the quadric surface
(compare (297)) :
‘ (figfaqab) =0 . . . . . . . . . (319)
77. The satellite of a point which describes a line ¢ = & + ¢b constructs one system
of generators of the quadric |
g=(fi+sf)(@+eb)y . . . . . . . . (320),

but the regulus degrades into a system of lines enveloping a conic whenever

(fiafaibfb)y =0 . . . . . . . .. (321),
that is, whenever the line belongs to the reciprocal of the complex of conjugate
satellites (318).

The conic is co-planar with the line when the further conditions
(abfiafib) =0, (abfyafib)y=0. . . . . . . (322),

are satisfied (compare (296), (298)).
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But when we are given, as here, a series of tangents to a conic homographic with
a series of points on a line in its plane, in three cases a tangent passes through its
corresponding point ; and evidently when a point lies on its satellite, it also lies on
the sextic [ £19.f599] = 0; so the line under discussion is a triple chord of the sextic.
It seems worth while noticing (compare Art. 66) the remarkable equation

(b, frt, fib, fot, SO =0 . o o o L. (323)

of the assemblage of triple chovds of the sextic, for this equation is equivalent to (321)
and (322).

78. Again, in an arbitrary plane Slg=0, it is generally possible to find one pomt P
whose satellite lies in the plane. The oondltlons are

Slp =10, Slfip=0, Slfyp=0, so p=[Lf"T f'1]. . . (324);

and the point is determinate unless the reciprocal of the plane lies on the conjugate
sextic (Art. 73), or, in other words, unless the plane is a united plane for some
function of the system. In this case (compare (312)) there exists a line locus for
points p whose satellites lie in the plane.

This is precisely the case of the last article, so when the envelope of satellites is a
conic co-planar with the line, the plane is a united plane.

79. For an arbitrary plane, the locus of points whose deriveds by f| + «f, remain
in the plane is the line of intersection of SI(f| 4 xfy) ¢ =0 or Sq(f) + «f)) =
with the given plane Slg = 0. All these lines pass through the point p, which may
be called the focus of the plane.

Assuming an arbitrary point p to be a focus, the plane of which it is the focus is
(compare (324)) the reciprocal of the point

L=[phHiphtpl. . . « . . . . . . (325)

The relation between a focus and the reciprocal of the plane is of the same nature
as the correspondence discussed in Section XIX. (compare (526) with (324)).
The points whose satellites pass through a given point « lie on a twisted cubic

lafigfig] = 0,

and the locus of points whose satellites lie in a plane is a right line. The satellite
of a point ¢ and the plane Slq = 0 pierces the plane in the point

=198 —fSlhg - o o o o . (320),

and from this quadratic transformation connecting the points ¢ and ¢, it follows
that ¢ (or ¢,) describes a conic when ¢, (or ¢) describes a right line. In the former
case the conics pass through the focus of the plane. Thus again an arbitrary line
qq’ meets the satellites of two points on the line (compare (320)).

Tt would take too long to explain the various geometrical relations in the plane
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Slg = 0, but subjects such as that just mentioned may be readily investigated by
writing
g =xa+yb+ze, ¢ =a'a+ b+ e,
where a, b and ¢ are any three points in the plane. Then the array
(¢} =N {be}4p {catdv {ab} i A=y —yz, p=2w'—22, v=ay —x'y . (327)

and

| {fug, it =N, [l + pife, fob + v {fim, S} . . (328),
if Je=J1+ Uty

Hence (compare (301) and (296)) the line ¢¢’ joins a point to its correspondent in
the transformation produced by f; if

SN (befibfie) 4 Suv {(cafiafb) + (abficfr)} = 0. . . . (329).

This equation may be regarded as the tangential equation of a conic involving a
parameter ¢ quadratically. For six values of ¢ the equation represents a pair of
points—one point of each pair being one of the six points in which the plane meets
the critical sextic, and the second point being the intersection of the plane with the
line into which the plane is transformed by the function (f; — s) which destroys the
aforesaid point (compare Art. 14, I).

In a united plane, the theory is simpler. Let «, 0, ¢ be the united points in the
plane, united points of /. Then (327) and (328) become

{99’y = N {be} + p {ca} + v {ab},
i) @b (fittfs) QS =NtbH 15D, tyetif ot +pitettfoe, ta-ttfya}
+ v {ta - tfyw, G0 4 tfby . (330);
and we get the conics

t{SN (befobfoc)+Zpv [(cafyaf )+ (abfycfoa) |} =13 (8, —t) pv (abefya)=0 . (331);

In this case the system of conics is inseribed to a common quadrilateral.
The conic enveloped by the satellites is

3N (befy,T0fyTle) A S [t (cafy ™ afyTI0) b (abfy T ofya) | = 0,

SN (befobfoe) + Spw [ty (abfacfyn) + t5 (cafpofob)]=0. . . . . (332).
80. More particularly for the functions ff’ff,, in a united plane of f, the united

points a, b, ¢ form a triangle (I) in perspective with the triangle (II) of the traces
of the united planes of the conjugate ; for these planes are

or

Bga=0, S¢gb=0, Sge=0 . . . . . . (333);
and the centre of perspective is given by '

SgaSbe = SqbSca = SqeSab .. . . . . . (334);
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while corresponding sides intersect in the points
bSca — ¢Sab, ¢Sab — aSbe, aSbe —bSca . . . . (835).
~ The point of concourse of lines of the linear complex in the plane is f,~1 [abc], or,
(ty — ty)aSbe + (tg — t)bSca 4 (¢, — t)eSab . . . . (336),

‘since this point is the intersection of the planes
Sqfa=0, Sqfb=0, Sqgfe=0 . . . . . . (837),

for which the united points are points of concourse. This point lies on the axis
of perspective (335), and the equation of that axis may be written in the form

q=(f—0f " abe] . . . . . . . . (338)

The three lines of the complex which pass through the united points intersect the
sides of the triangle (I) in a triangle (III) in perspective with (I), and through the
vertices of this third triangle pass the polars of the united points with respect to
the quadric Sqf,q = 0, and the traces of these planes form a triangle (IV) likewise
in perspective with (I).

SECTION XIIL

B
TaE SysTEM OoF QUADRICS S¢ St q = 0, AND SOME (QUESTIONS RELATING TO

St

Pores aAND Porars.
Art, Page
81. General properties of the system . . . . e . . 279
82. The intersection of two quadrlcs of the system a,nd the analogies for confocal and

concyclic systems , . e . . c o e e ... 280

83. The poles of tangent planes to two quadrics w1th 1espect to a thud ... ... 280
84. The condition that three quadrics may be polar quadrics of a cubic surface . . . . 281

~ 81. In this section we shall notice some properties of the system of quadrics

Sg?ijg.—o C oL (339).

The self-conjugate function f in this homographic system may be supposed reduced
to the type noticed in Art. 28, for by a linear transformation the symbolic quartic
may be reduced in three ways to the form

AN EN=0. . . . ... . . (340),

The system (339) is its own reciprocal, and it includes confocal and concyelic
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systems. If « is the pole of the plane Sbg = 0 with respect to one of the quadrics,
‘a and b are connected by the equation

b—-'?i a,or (f+6)b=(f+s)a, ma-*—jjiz Coo (341)

Given b, the locus of @ is a twisted cubic if s alone varies, a right line if s is con-
stant, and a quadric
(afa by =0 . . . . . . .. . (342)

when s and ¢ are both variable. (Compare Art. 70.)

The points of contact of the plane with quadrics of the system are found by adding
the condition S«b = 0, when we find three points, one point or a conic locus.

A generalized normal joins a point to the reciprocal of its tangent plane, thus for
u variable,

—J+ Y, when DCLf+ =0 . . . . (343)
S S
is the generalized normal at the point «; or deleting the condition and allowing
t and u to vary, we have the equation of the assemblage of normals through the point
a, and when « itself varies, we see that (342) represents the complex of normals to
the system.
82. In general, two quadrics s, ¢, and s, ¢, intersect in a curve through which no
third quadric of the system can pass, but when ¢, = ¢,, an infinite number of the
quadrics intersect in the curve. This follows from the consideration that

(f+0) (S +0)

is the general equation of a quadric through the curve ; and a factor will not cancel
unless ¢, = 1,

If ¢ is any point on the curve of intersection, the poles of the tangent planes at
that point with respect to some third quadric of the system will be conjugate to that
quadric if

7=

=0 . . . . (344)

S (S A4 8) (f 4 s) (/4 1) ,
MR (g T B

~In order that this may be the case for every point on the curve, the factor f - s,
must cancel. Thus we must have sy equal s, s, or #,  But further, on comparison
with (344), it appears that the third quadric must coincide with one of the others, or
else that t; = s, and s, = s,.

This theory embraces the laws of confocals, their orthogonal section, and the pro-
perty that the pole of the tangent plane to one, at a point of intersection with a
second, taken with respect to the second, lies in its tangent plane at the point.

83. More generally, given any three quadrics
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Sqfig=10, S¢fegq =0, Sqfeg=0. . . . . . (346);

take the polar planes of a point ¢ with respect to the first and second, and the poles
of these planes with respect to the reciprocal of the third; these poles are conjugate
to that reciprocal provided the point lies upon the quadric

Sefafsig=0 . . . . . . . . . (347).

If the quadrics have a common self-conjugate tetrahedron with the quadric of
reciprocation, the three functions have the same united points, and are consequently
“commutative ; and the thrée surfaces (347) obtainable for different selections of the

quadrics (346) are identical.

84. Before leaving this subject, it may be of interest to show how the invariant
condition that three quadrics should be polar quadrics of a cubic presents itself.

We have, if the quadrics are polars of the cubic F(qqq) = 0,

Sqfig =T (aqq), Sqfoq = F(bqq). Sefsg = Feqq) . . . (348),
if a, b, ¢ are the poles. Ience
Sqfib=8qfyu; Sqfee =S¢ fb; Sqfee=8qfic . . . (349);
and on identifying the planes
fib=fos fae=jsb; foo=fic . . . . . . (350);
a=f s o T e o o o oL (851);
and the function ;7! f £~ fo /i1 fs must have one latent root equal to unity.

g0 that

SECTION XIV.

PROPERTIES OF THE GGENERAL SURFACE.

Art. Page
85. The principle of reciprocity, Q=Spg=P . . . . . . . . . . . . . . . . 281
86. The self-conjugate function f defined by dp=(m-1) f(dg) . . . . . . . . . . 282
87. The reciprocal relation fy=gf=1, where dg=(n—-1)gdp) . . . . . . . . . . 282
88. The relations of reciprocity, — Sdpdg=Spd?g=Sqd?» . . . . . ... 283
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92. The quadratic equation of the principal curvatures . . . . . . . . . . . . 285
93. Generalized geodesics . . .. . . . . 4 v . 4 o a0 e e 0. ..o 28D

85. If Q is a homogeneous and scalar function of a variable quaternion g of order

m, the equation ‘
Q=0 . . . . .« . ... (352

VOL, CCIL.—A. 2 0
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represents a surface. We shall write generally for any differential
dQ=mSpdg. . . . . . . . . . .(353),

where p is a homogeneous quaternion function of ¢ and of the order m—1. Since p
is a determinate function of ¢, ¢ may be regarded as a function of p; and using
EuLer’s theorem for homogeneous functions we have

Q=Spg=P . . . . . . . . . . (354

where P is the function of p into which Q transforms.
86. Again, we shall write generally for the differential of the quaternion p regarded
as a function of ¢,

dp=(m—1)fdg . . . . . . . . . (355)

where f'dg is a linear function of dg, involving ¢ homogeneously in the order m — 2.
This function is self-conjugate, for taking two successive and independent differen-

tials of Q,
d'dQ = mSp d'dg + m (m — 1)S . fd'q. dg

=dd'Q=mSpddq +m(m—1)S.fdg.dqg. . . . . (356);
and because the differentials are independent,
d'dg = dd’q, and therefore Sdgfd'q =8d'qfdg . . . . (357),

consequently the function fis self-conjugate, for dg and d’q are quite arbitrary.
87. Differentiating (354) we find on comparison with (353)

dP = nSq dp, where (n — 1)(m—1)=1 . . . . (358),

and it is easy to verify that n is the order in which p is involved in P. Also
introducing a new linear function ¢, we write

dg=(n~—lgdp . . . . . . . . .(359),

and, as in the last article, ¢ is self-conjugate and involves p in the order n — 2 in its
constitution.
Thus for any differential by (355) and (359)

dp = (m —1)fdg = (m —1)(n—1)fydp=fgdp . . . (360);
or symbolically ‘ . ’ 61
=fg=qf . . . . . . . . . . ,

and one function produces on an arbitrary quaternion the same effect as the inverse
of the other. In particular, employing EuLer’s theorem in (355) and (359) we have

p=fy=9"q; g=gp=/"p . . . . . (362)
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88. When dg, instead of being perfectly arbitrary, satisfies
dQ =0 or Spdg¢=0, where Q=0 . . . . ., (363),

dg represents some point in the tangent plane at ¢ to the surface Q = 0. The point
p is the reciprocal of the tangent plane with respect to the unit sphere S¢* = 0; and
the surface P = 0 is the reciprocal of the given surface. The relations of reciprocity
are clearly exhibited by the equations (compare (354))

Spdg=0, Sqdp=0, dP=01f Q=0, dQ=0 . . . (364);
— Sdpdg =Spd® =8Sqd®%, d*P =0 if also &*Q =0 . . (365).
89. For the asymptotic lines, in addition to (364) and (865), the new relation
0=Sdpdg=Spdq¢q=8gd*». . . . . . . (366);
and thus for arbitrary scalars « and y

S(p+adp) (¢g+ydg)=0 . . . . . . . (367),

or the reciprocal of an asymptotic tangent is the asymptotic tangent to the reciprocal
surface at the corresponding point. Hence also, if corresponding tangents are
reciprocal they touch asymptotic lines.

The tangents to the asymptotic lines of the original surface are also represented by

the equations
Srfr=0, Spr=0 . . . . . . . . (3868);

and those of the reciprocal surface by
Srgr =0, Sgr=0. . . . . . . . . (369);

7 being allowed to vary arbitrarily, but p and ¢ being kept constant. These lines
are, in fact, the generators of the reciprocal quadrics

Srfr=0 or Srg7lr=0, and Srgr=0 or Srf~r=0 . (370),

(compare (362)) which lie in the corresponding tangent planes.

90. The generalized normal to a surface at any point is the line joining that point
to the pole of the tangent plane with respect to the quadric of reciprocation. But
as there is practically no additional labour involved in the following discussion when
the auxiliary quadric is arbitrarily selected, we assume it to be

Sqhq =0 . . . . . . . . . . {(3871);
and then the equation of the normal at ¢ to the surface Q = 0 is

r=q+thp. . . . . . . .. (372).
20 2
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If cis a centre of generalized curvature, or a point at which consecutive normals
intersect, we have for intersecting normals

c=q+th™p, de=dg+t'dp+Apdt=cdu. . . (878),

where duw is some small scalar, and de¢ = cdu, because on the hypotbesis that
consecutive normals intersect in ¢, ¢ and de represent the same point and differ only
in weight. On elimination of ¢, (373) becomes

dg+th~tdp+ov(g+th~p)+uwg=0, (v=dt—tdu, v+w==du) . (374);
and as this may be written
(14 th71) (dg+-vq) +wg=0, or dgt+vg--w(14+th=f)g=0 . (375),
we find, on operating by Sp or Sfy, the equation
Sef(L+ =) lg=0. . . . . . . . (376).

On inversion of the function this becomes a quadratic in ¢ whose roots determine
the two centres of curvature.
91. This equation may be thrown into the more suggestive form™

Sq(f~ 14 th) g =0. . . . . . . . (377),

which shows that the roots ¢ are the parameters of two of the quadrics of the
singly infinite system S« (/= + th~1)~1 r = 0, which pass through the point ¢. The
third quadric of the system through that point is of course Srfr = 0, which corre-
sponds to ¢ = 0. The quadric ¢ = o is the auxiliary (371).

The two centres of curvature (373) are (¢, and ¢, being the roots of (377))

=014+t Vp, =T+t . . . . (378);

and the form of these equations shows that the points are the poles of the tangent
plane Srp = 0 with respect to the two quadrics ¢, and ¢,
The equation of the tangent to a line of curvature, » = ¢ 4 @ dg may by (375) be
thrown into the form
r=q+yfT (T TN =g (L y) = yth T (TN )Ty L (379),
where ¢ = ¢, or ¢,, and the form of this equation shows that the tangents are the

generalized normals to the quadrics ¢, and ¢,
The first form of (379) shows that the tangent ¢, touches the quadric ¢, for

Sq (At DT R ) g =0 . 0 . . (380),
ag appears on replacing the middle function by

* Because (1+071f) = ((f~1 +th=1) f) 1= (f“l\'-}- th=1)~1,
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(b—=t) =t ™) =t (Y. o oL (381);

and, moreover, the lines of curvature form a conjugate »ésean on the surface, for
(380) gives

Sifra= 0 3 1y = 7L (F7 b, ny = (T A AT g L (582),

(compare (379)).
The other usual properties analogous to those for confocals may be easily obtained,
but it must suffice to state that the centres of curvature for the quadric ¢, are

¢ =S AT o = (T A7) (4 A g L (388),

92. To reduce the equation (377) to a quadratic, let the symbolic quartic of
=11 be
(WY =N (WP N (AP =N () + N=0 . . (384);

then on multiplying by ¢* and dividing by 1 + ¢/, the result is
BB P =N (PN () =N =2 {(h7 ) =N () + N"}
+t{(h7)=N"} =1 ==N, (L4 th~1f)"1. . . . (383)

Observing that the coefficient of 3 on the left is — N (471 )~ or — N /=11, the
equation (376) becomes

ENSqhq + 889 f {071 = N7 (171f) + N} g

= 88fq {7 f=N" g+ 8qfg=0 . . . . (386);
and this immediately reduces to
'NSqhq + tSp (WY b=t = NN p + Sph~p =0 . . . (387),

when we replace fy by p, and discard the extraneous factor ¢.

If n and n, are the fourth invariants of f and 2, N = nn,™!; and it is easy to see
that » is the result of substituting ¢ in the equation of the Hessian of the surface
if Q is an integral as well as a homogeneous function of ¢.  Thus one root is infinite in
either of two cases, if the point is on the Hessian, and if it is on the auxiliary quadric;
in either case the centre of curvature is the pole of the tangent plane with respect
to the auxiliary. A root is zero if Sph~'p = 0, and in this case the tangent plane
touches the auxiliary, and a centre of curvature is the point ¢ itself. These special
cases depend on two distinet conditions, the relation of the auxiliary quadric to the
surface, and the relation of the Hessian to the surface.

93. A curve is a generalized geodesic when consecutive tangents are coplanar
with the pole of the tangent plane with respect to the auxiliary quadric; or,
symbolically,
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(q,dg, &%, h™'p) =0, or xq+ydg+zdP¢+wh™lp=0 . . (388)

is the equation of a geodesic.
Operate with Sp, Sdp, Shq, Shdg and by (364), (365),

Spdiq + wSph~'p = 0; ySdpdq + 28dp d*q 4 wSdp~~'p =0 ;
#Sqhq+ySqh dq+28qh d*q=0; aSqh dg+ySdgh dq+28dqh d%¢=0 . (389).

Introducing the function f and eliminating the scalars xyzw, we find

Sdph=lp _ _ ySdqfdq 4 28dq fd*q

Sph=lp — 25dq f dg
_ Sdqfdq | SqhqSdgh dq — Sqh dgSqh &g (390) ;
Sdfdg T SqhgSdghdg — (SghdgP ’

and this, when the surface is a quadric so that f is constant, immediately integrates,

and gives

Sph~'pSdq fdq = u (SqhgSdgh dg — (Sqh dg)?) . . . . (391),

where u is the constant of integration.

SECTION XV.

Tae ANALOGUE oF HamrnToN’s OPERATOR V.

Art. Page
94. The operator D. If dQ=Spdg, then p=DQ. Symbohcal equation of definition

involving four arbitrary differentials . . . . Co 121

95. The form of the operator in special cases. . . . . . . . . . . . ... 287

96. Examples of the effect of the operator and analogues of LAPI ACE’s equation . . . . 287

97. Method of forming polars and analogy to ARONHOLD’S notation . . . . . . . . 288

94. In applications of quaternions to projective geometry an operator analogous to
HamILToN’s V is occasionally useful. I define it by the equation (compare Art. 85)

DQ=p when dQ=Spdg . . . . . . . (392)
To render this operator available for use, take any four independent differentials of
p Y p
q and write down the identity
p (dq d/ d// d///g) [d/q d// d///q] qp dg — [dg d// d/f/q] Sp d/
+[dgd'g A"41Sp d'q — [dg g d'g]8pd"g . (393),

which suggests the symboiical equation
!/ 4 "
—sk[dgdlgd"]d gy

(dg d/g d//q d///g)

where the summation refers to the four symbols d.
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95. Otherwise, if the quaternion variable ¢ is a function of four parameters, x, ¥,
z, w, we may replace the arbitrary differentials in terms of the deriveds of ¢ with
respect to these parameters, and then (394) becomes

, Q] O
where b=s :(l‘:lz[gqyiézv)] ow T (395),
R A R A
In particular, if these four deriveds satisfy the six equations
8¢.9, = 8¢,¢: = 8¢.0. = 8¢.00 =8¢,00 =8q.q. =0 . . . (397),
it easily appears that the symbolic equa,tion (395) reduces to
D= 9 9 4 + O 4 G 0 (398).

Sq.2 893 qu2 8y Sq 29z ' Sg,tow

More particularly if ¢ is referred to the vertices of a tetrahedron self-conjugate to
the unit sphere, so that

g=ax+by+cz+4dw, andif Se*=8P*=8>=8d>=1 . (399)

for suitable selection of the weights of these four points, the operator takes its
simplest form

0 0

D= —|— b + o, T d P (400),
while
- G )
SD? = <8:v o)t +lw) - - oD,
If, on the other hand, g=t4+w+yy+k . . . . . . . . (402),
the operator reduces to - D= gt —V ..o (403).

96. It may be useful to collect a few formule which may serve as examples of the
application of the operator. We therefore give the following :

Dg=4; DKg= —2=KDq; DSq¢=1=8Dq; DVq =3 = VDg;
DSaq =a; DS.¢* =2¢; DT¢* =2Kq; Dg? =4 (q + Sq); D (Vq)? = 2Vq;
DT (g4 ) = KU(g+ a); DSqfq = (f+/")q

To these we may add
DT (g 4+ a)) = — 4 =TD*S (¢ 4+ a)*; TD*T (g + a)* = 8 = D*S (¢ + a)*;
TD?. Tg" = nKD. KqTg"=* = n (4Tq"~* 4 (n — 2) gKqTq*~*) = n (n + 2) Tg"~2,
And again
D*(S.¢%) =2nD.q(S.¢*) "L = 8n(S.*y ' + 4n(n — 1) ¢*(S.¢?)~2;
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and on taking the scalar of both sides
S.D2(S.¢%)" = 4n (n -+ 1) (S.¢Y)" L
From these results follow certain analogues of LAPLACE'S equation
TD*Tg=* =0, TD*f(D).T(g+a)*>=0 . . . . (404);
S. DS =0, S.D%SD).(S.(¢+a®P) =0 . . . (405)

Moreover, the general expression for the operator in terms of arbitrary differentials
a, b, ¢, d of ¢ enables us to write down a number of invariants and identities, For
instance, operating on fi, we find

D. fq.(abed) = [bed] fa — [acd] f + [abd] fe —[abe]l fd . . (406).

Other examples relating to integration will be found in a paper in  Proc. Roy. Irish
Acad.,” vel. 24, Sect. A, pp. 6-20.

97. So far as projective geometry is concerned, the use we make of the operator D
is to form successive polars of a point with respect to a surface and to show that it
leads directly to AroNmoLD’s notation.

The 7' polar of a point » with respect to a surface Q = 0 of order m is

(DY Q=0 . . . . . . . . . (407).

If n = m, the operator simply multiplies Q by a numerical factor and changes the
quaternion involved from ¢ to ». Thus we may write the equation of the surface in
the form

and

SrDy"Q =9, or (Sra)y*=0 . . . . . . (408),

where @ is a symbolic quaternion devoid of meaning unless it enters into a term
homogeneous in a to the order m. This is equivalent to ARONITOLD’S method.

SECTION XVI

THE Bruivegar QuarerNion Funcriow,

Art. Page
98. Definition of the bilinear function f (pg). . . . . . . 289
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102. Successive conjugates and permutates. The six fundamental functions . . . . . 289
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o
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98. We shall now explain a method which promises to be of considerable value in
the application of quaternions to projective geometry.

A bi-linear quaternion function f(pg)is a function of two quaternions (p and ¢)
linear and distributive with respect to both. It may be reduced to the form

S (pe) = aSpfia + aSpfyg + aSpfag + aSpfig . . .. (409),

where @, a,, a;, ¢, are any four quaternions and where f}, f3, /5, and f; ave four linear
quaternion functions. The bilinear function involves sixty-four constants, sixteen for
each of the four functions.

99. Writing generally for all quaternions p and ¢

D=4 - (o),

we may call the new bilinear funetion /, the permutate of the tunction . When a
function is unaltered by transposition of the quaternions, it may be called a per-
mutable function. Thus

Plpg) =5/ (p) + 5/ (00 - - - . . . (411)

18 a permutable function, the permutable part of s or f. A permutable function
involves forty constants, the functions f'), fy, fy fy of (409) being then self-
conjugate.

100. When a bilinear function changes sign with transposition of its quaternions,
it may be called a combinatorial function. Thus

Clpy)=3f(p))—%/i(pe) - - - . . . - (412)

is combinatorial. It vanishes for p = ¢, and, regarded geometrically, it relates not to
a pair of points, but to the line joining the points.
A bilinear function is thus reducible to the form

S D) =P (pg) +C(pg)s fi{pg)=P(pq)—C(pg) . . (413);

and is uniquely resoluble into its permutable and combinatorial parts.
101, Writing generally for any three quaternions, p, ¢, and 7,

Sif (pg) = Spf” () = Sq" ()« . (414),

we shall call the new functions f’ (pq), f” (pg) the first and second conjugates of
S(pq). Intact 7 (pq) is the conjugate when the first quaternion p alone varies, and
J" (pg) is the conjugate when the second varies.

102, As the accents employed to denote the permutate and the first and second
conjugates are not commutative in order of application, it is safer to use brackets in
the rare cases in which double accents are necessary. Thus

J(pg) = ()Y (p) = (/)" (pa) = (/). (p0) -~ . . (415),

VOL. CCIL—A. 2r
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because the first conjugate of the first conjugate of f(pq) is simply the function f(pg)
itself.

When the successive accents are ditferent, the laws connecting the various functions
are deducible from the relations (compare (414))

Sif (pg) = Spf” (rq) = Sq (/) () = 8p (), (a1
= 8" () = S0 ("), () = 80 (") (1)
= Sif, (gp) =Sq (£) 0p) =Sp (£ (@) . . . (416),

in which p, ¢ and » are perfectly arbitrary.
These relations show that

Y (pa) = (") (pa) = (5 (p0) =17 (qp); |
() (pg) = () (p) = (Y (p) =" (qp) - - - - (417);

and thus any multiply accented function may be reduced to one or other of six
fundamental functions, the function and its two conjugates and the permutates of
these three functions.

103. Exactly as in Arts. 5 and 6, the equations

(f(aq) = tas f(bg) = tbs feq) = te; f(dg) — td)
= (/" (ag) = ta; J7(bg) = ths f"(eq) — tos f" (dy) — td)  (418),

(f(pa) = ta; f(pb) —tbs f(pe) —te; f(pd) — id)
= (" (pa) —ta; f"(pb) — tb; j" (pc) — te; f" (pd) — td) (419)

are identities for all quaternions p, ¢, a, b, ¢ and d, and for every value of the scalar ¢.
The first is obtained on the supposition that f(pg) is a function of p, and the second
on the supposition that it is a function of ¢. Dividing each member of the identities
by (abed), we obtain the biquadratics

J(q) =t (q) + 027 (q) = 17" (g) + 14
I(p)—tI'(p)+ 1" (p) —tI" (p)+ ¢+ . . . . . (420);

and J (q), J" (q), " (9), J" (q), of the fourth, third, second and first order respectively
in ¢, are the invariants of f(pq) considered as a function of p. Equating these
biquadratics. to zero, we obtain the equations whose roots are the latent roots of
f(pq) as a function of p and as a function of ¢.

It is evident from (418) and (419) that these relations are equivalent when the
function is permutable, and then 7(q) = J(q), &c. ’

104. The quartic surfaces

(=0, Jg)=06¢ . . . . . . . . (421)
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we shall call respectively the first and second Jacobians. Whenever a pair of
quaternions satisfies the equation

f(}”l);o o e e e e e e (422)’

the point p must lie on the surface I (p) = 0 and ¢ must lie on .J (¢) = 0; for f(pr),
a linear function of 7, has then one zero latent root, and f(r¢) has also a zero
latent root.

On reference to (409), it appears that (422) is equivalent to

Spha=8Spfg=Spfy=8pfig=0. . . . . . (423);

and in the particular case when the function is permutable, the four linear functions
are self-conjugate, and the equations assert that the polar planes of one point (p)
intersect in the other (¢). In this case the surfaces (421) coincide with one another
and with the Jacobian of the four quadrics; and although it does not appear that in
general the surfaces are the Jacobians of four quadrics, we have retained the name as
being convenient and suggestive.

Two points related as in (422) will be called Jacobian correspondents, or more
particularly I.J Jacobian correspondents.

105. When a function has a zero latent root, so has its conjugate. Consequently,
whenever p and ¢ are Jacobian correspondents, or whenever (422) is satisfied, it must
be possible to find two other points +" and #”, so that

Fg) =0, f"(py=0 . . . . . . . (424).

There are thus two new types of Jacobian correspondence ; and the argument of
Art. 102 shows that there can be no more, for the conditions (422) and (424) may be
re-written in the form

Lap)=0, (/) (g’)=0, (f),0"p)=0 . . . . (425),

without altering the signification of the equations, and we have now exhausted the
six fundamental functions of the article cited.

106. The points “+/” and “+"” of the second and third Jacobian correspondences
lie upon the third Jacobian K (r).

A latent root of f(1/q) considered as a function of ¢ (424) is zero, and therefore
satisfies the equation

(f6a), f00D), J/@e), 107 d)) = ((f) ('a), (F1)'(7D), (1) (e), (f)' (' d)=0 . (426),

in the second number of which the function of ¢ has been replaced by its conjugate.
But (417) the second number is equivalent to

(S (ar), f7br), f" (er), f"(dr))=0 . . . . . (427),
and consequently »”, which satisfies (427), satisfies also (426), or +/ and + lie upon the
same quartic surface,

2Pr2
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As in Art. 103, we deduce the identity

(f' (ra) — ta; [/ (1) — tb; [ (re) — te; f'(rd) — td)
= (" (ar) —ta; [ (br) —tb; [/ (cr) —te; [ (dr) — td) =0 . (428);

and the result of dividing by (¢bed) may be written in the form
K (r) = tK'(v) 4 PK" (v) — K" (r) ¢+ . . . . . (429),

and the latent quartic of £/ (rq) or /' (¢r) (fanctions of ¢) is obtained hy equating this
to zero.

The scheme of the Jacobians i1s now complete, the six fundamental functions of
Art. 102 having been employed.

The points 7 of (424) may be said to be JK Jacobian correspondents, and p and
1”" are 1K correspondents.

When f(pq) is permutative, the JK and I/ types unite and I coincides with .J;
when f'(pg) is self-conjugate with respect to p, A coincides with 7, and the JK and
1.J correspondences coalesce,

It readily appears from (416) that when the function is doubly self-conjugate it is
also permutable, and when it is permutable and self-conjugate to one element it is
likewise self-conjugate to the other. In this case the three Jacobians coincide with
the Hessian of the cubic surface

Sef(g)y=0. . . . . . . . . . (430).
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107. When one of the quaternions in a bilinear function is regarded as a quaternion
parameter, the function represents a triply-infinite system of linear quaternion
functions, or a four-system of linear functions, to borrow a convenient phrase from
Sir Roperr BaLr’s ¢ Theory of Screws.’

Thus

F(p9) = @/ (p10) + 22 (Pa1) + %5/ (Ps2) + @S (pas),
where p=uap, 4+ a,p, + wyp; +2,p, . . (431)

is a linear combination of four given linear functions f(p,q), the quaternions p, being
supposed given while the scalars «, are variable.
It is frequently of advantage to use the notation

Sa)=noy=rm - « - . .. (432),

when the bilinear function is regarded as a function of ¢ or as a function of p.

108, An arbitrary point is a united point of « definite function of the jour-system,
provided it does not lie on a critical curve of the tenth order.

If ¢ is assumed to be a united point of a function determined by p,

Sk at=0, or flpa)=rtq. or fi(p)=tg . . . (433);

and the solution of the equation in its third form is
pI(Q) =tF,(q), or p=Fq), t=J() . . . . (434),
where 7, is HamiLTON'S auxiliary function corresponding to f, and where J(¢) is

the fourth invariant of f, (Art. (103)).
This solution is definite (Art. 15), provided ¢ does not lie upon the critical curve

Fo(@)=0 . . . . . . . . . . (435).
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To exhibit the nature of this curve, observe that
0=5. F () [p1paps] = Sql) T pipaps] =1 q5 fupis Lapas Lors] -+ (436)
for all quaternions [ p, popsl, [ P122p.), &e. 5 or, in the notation of Art. 65,
(g, f(210)s S(p29), S (o), S(u@)) =0 . . . (437),

whenever (435) is satisfied. But we have seen that (437) represents a curve of
order m = 10 and rank » = 40 (278), which is common to all the quartic surfaces
obtained by deleting one quaternion within the double brackets (436).

The solution may be expressed in a more explicit form hy means of the identity

q(S(pr9), S (P22), S (239), S (Pa))=24 S (P10) (0 F (929) S (239), S (paq)) - (438),

so that we may write (434) in the form

P(Pipapspy) =2 £ Py (¢ S(229) F(230), S(Ps0))s t=1T(q) . (439).

109. When the point lies on the critical curve it is generally o wnited point
of every function of « determinate two-system.
In this case the solution of (433) is (Art. 15)

P =16 () + Fy(p) - . . . . . . (440);
or P =G (@) +ap, f(pg)=0, t=J(q) . . . . (441).

Thus p may be any point on the line joining the point G, (q) to p, — the Jacobian
correspondent of ¢; and consequently a determinate two-system exists, every
function of which has ¢ for a united point (compare Art. 123).

110. Similarly for the conjugate four-system f(pr), a point # is a united point
of a definite function, unless it happens to lie upon the conjugate critical curve

FX(ry=0 . . . . . . . . .. (442),

where I, is the auxiliary function of f;' ( p) = f” (pr), but we must observe that f,
is not the conjugate of f.

Now the reciprocal of a united point of f” (pr) (the conjugate to » of f(pr))isa
united plane of the original four-system. And thus an arbitrary plane is the united
plane of some definite function, but if the plane belongs to the developable surface
(442) it is a common united plane of a definite two-system of functions determined by

p=G ) tapy, f"(per)y=0 . . . . . . (443).
Ten of these singular planes pass through an arbitrary point; the order of
the developable surface is » = 40; and the order of the cuspidal curve* is
n =3 (r—m)+ B =90.
* ¢ Three Dimensions,” Art. 327,
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111. It is obvious from this theory that the united points of functions of this
system compose definite tetrads, so that one point of a tetrad being given the
remaining three are generally determinate.

In fact (434) is a quartic transformation connecting united points ¢ with the
auxiliary points p, so that one point p corresponds to one point ¢, while fowr points ¢
correspond to one point p.  For a given point p, these four points are by (434) the
intersections of the quartic surfaces, for arbitrary quaternions /,

SULE, () — SLE, (q) — SLE, () — §Z4F} (@) .
Stp Slyp Slyp Slp

(444).

But these surfaces have a common curve (435); and three surfaces having a
common curve intersect in
[LVp-??l([L+V+p—2)+’)‘ e (44))

points not on the common curve, and this number is 4 when p=v=p =4,
m = 10, » = 40, as in the present case.

112. The locus of pownts “p” determining functions, each of which has o united
pownt on a given line, is « unicursal twisted quartic.

When we replace ¢ by ¢ + ¢’ in the second form of (434), we may write

P = (poprpopapade, V=p. . . . . . . . (446),

and the form of the equation establishes the proposition.

In like manner we have
t= (tottolat X, 1)t =1t . . . . . . . . (447).

113. For every intersection of the line with the critical curve, the quartic breaks wp.
If o’ is the value of the scalar = for a point on the critical curve, p, and ¢, both

vanish, or
0 = (pap1papsp e, 1) 0 = (tet ittt o, 1. . . (448).

We may employ these equations to eliminate p, and ¢, from (446) and (447); and
discarding the factor « — @/, we find

P=(Pop19ap s ety b= (Tt L (449)

The locus of p is now a twisted cubic, and the discarded factor corresponds to a line
of the nature of those of Art. 109,

When the line g¢" meets the critical curve twice, the locus is a conic and a pair of
lines. 1If the line is a triple chord, the locus is one line of a new type and three lines
of the type already mentioned. Finally; for a quadruple chord, the quartic reduces
to a point and four lines, as we shall see immediately. -

But first we notice that the arguments of Art. 110 apply, so that we may write
down the equation of the guartic curve whose points determine functions, cach of
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which has a united plane through a given line. If the line lies in one or more of the
planes of the developable (442), the quartic degrades in the manner explained.

114. Otherwise we may say that (446) and (447) determine a system of functions
J(psq) — t.g which destroys the line ¢ 4 x¢" point by point. Or counting unity as
one function, it may be said that a five-system is required to destroy a line point by
point. However, when the line intersects the critical curve once, twice, or thrice, it
can be destroyed seriatim by a four-, three-, or two-system of functions. For example,
in the case of triple intersection we may write

Pe=p@ tp, Le=1tlw+ 1 f(pe+ps ¢+ g) — (e + 8) (e +g) = 0 (450);
and, going one step further, in the case of a quadruple chord
So de gy =1G(wtq) o oo (451)

Thus a guadruple chord of the critical curve is a line locus of united poinls of
a determinate function. And because the number of quadruple chords of a curve is
(‘ Three Dimensions,” Art. 274) ‘

gy (— m* 4 18md — 7T1Im® 4 78 — 48mh 4 132h + 121%) . . (452),

or 20 for m = 10, b = 25, we learn that twenty functions of the four-system have line
locy of wnited points—quadruple chords of the critical cuive.

The formula (314) gives 80 as the order of the surface of triple chords.

115. The locus of « point which determines « function having a united povnt v o
gwen plane is a sextic surface.

The functions H,, ¢, and F, being Hamirron’s auxiliary tunctions for £,(¢) = f(pq),
the relations

Hy(g)=1tq; Glg)=Vqg; F()=1"q. . . . . (453)

are satisfied, provided ¢ is a united point of /'(pg), ¢, t” and ¢ being suitable scalars.
If ¢ lies in a given plane, these equations, with that of the given plane, afford the

relations
Sel =0, SqH,/(l)=0, SqG/(l)=0, Sq¢F,/()=0 . . (454),

linear in ¢ and of ovders 0, 1, 2 and 3 in p.  Expressing that ¢ is & common point,
we have the equation of the sextic surface '

O IO, G0, E/O)=0 . . . . . . (155)

116. The sextic surface has o double curve of the scventh order answering Lo puairs
of united pounts in the plane, -
If the first, second and third of equations (454) regarded as planes in ¢ inlersect in

a common line, the fourth plane will also pass through that line. The condition for

a common line is

wl 4 ol () +wG/ (=0 . . . . . . . (L56),
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where 1, v and w are certain scalars.  Operating on this by £/, we have by Art. 6
w( " (p)y =N+ (1" (p) =G +w(l'(p)—F)NI=0. . (457),

remembering (Art. 103) that I” (p), I” (p), I’ (p) and I (p) are the invariants of f,.
But this relation gives F,/ () linearly in terms of I, H,’ (1), &, ({), and therefore, as
asserted, the fourth plane will also pass through the common lme.

Hence it appears that (456), or its equivalent

[0, 1L (1), G/ ()] =0 . . . . . . . . (458),

represents a double curve on the sextic (455) ; for if p is any point on this curve, not
only will (455) be satisfied, but the equation of the tangent plane at that point will
also vanish, since every set of three quaternions included in the brackets of (455) is
then linearly connected. The order of this curve is 7, by Art. 64.

Moreover, (456) expresses that a united line of the function f, passes through the
point /, or, reciprocally, that a united line of the function f, lies in the plane Slq = 0.

117. The point determining the function for which the plane s « z:mted plane
s a triple point on the sextic.

If py is this point, and if ¢, t,, ¢; are the roots of the function f(p,q) answering
to the united points in the plane, it follows from the fundamental properties of the
auxiliary functions that

o, ()y=3t,.1, G,() =301 F,()=ttt,. 1 . . (459);

1

and consequently the tangent plane and the polar quadric of the point p, to the
surface (455) vanish identically. The point is therefore a triple peint.
118. It may be noticed that in terms of @, b, ¢, any three points in the plane,

the triple point is o _
po=Lr ) LU, SO L (460);

also in terms of these three points, if [ = [alc],

1)) =20/ (pa) by o], G/ () =2 [a, f(ph), F(po)],
) =[f(pa), f(pb), f(pe)] . . . . . . . (461).
Consequently if ¢ = wa 4 yb + z¢, we may replace the system of equations
(454) by
e X +yY 422 =0, aXy-fyYo+:2Z,=0, aX;+yY,+:2,=0. (462),

where

X =8all)(l) =
.X = x,CLGj, (l)
X, = Sall) () =

(@, f(pa) b, ¢);
(@, (pa) £ (pb), e) + (a0, f (pa), b, [ (pe)) 5
(¢, f(pa), f(PD), f(pe)) -« - . . . . . (463);

and ¥V, Y,, Y, and 7, Z,, Z, may be written down from symmetry.
VOL. CCL—A. 2Q

]
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Moreover, when we specially select the points «, b, ¢ as the united points of the
function f'( p,q), and when we form successive polars of p, with respect to X, X, and
X, we find (Art. 97) in terms of the latent roots ¢, ¢,, 5 corresponding to a, b and ¢,

| SpD . X =0, SpD.X,=(t, +1t) X, (SpD)y X;= 26X, . (464),
SpoD - Ya=(a, /( ps), S (), S (pe) (e f(pa). f(pob), S pe)) (. f (o). S (D), S(poc))
=t, (a, f(pa), b, f(pc)) + ts(a, f(pa), f(pb),c). . . . . . . (465),

and similarly in the other cases.
Thus the equation of the sextic may be written in the form

X Y Z
Xy ¥y Z,
Xy ¥y Zy

=0, . . . . . . . . (466),

and the third polar of the point p, is
(tg— 1) (s —8) (8, — ) XYZ=0. . . . . . (467)
Thus the tangent cone at the triple point breaks up into three planes.
In the same notation the double curve is represented by
XY Z

=0, . . .. ... (468):
| X, 1.2 | (468)

and forming the polars, the point p, is seen to be triple and
X Y Z f
(A B)X, (48)Y, (4 L)

represents the system of tangents at the triple points—the lines of intersection
of the planes X, Y and Z.

We may add that the equation of the cone, vertex p,, standing on the curve is

(tg ~—t) XYZyt (ty— ) XYZ 4 (1, — 1)) XYZ, =0 . . . (470).

=0. . . . (469)

119. This surface resembles a STEINER'S quartic in many particulars, but it is a
degraded case of the general surface -
p=I(xyz)* . . . . . . . . . . (471),
where (zyz)* is the general quaternion function of three homogeneous scalar
parameters x, v, . The general surface is of the 16th order. The STEINER quartic
may be written p = (xyz)?, a general quaternion quadratic function of z, v, =
Surfaces of this type arise from the general transformation ‘

p=f 9 --.¢ - . . . . . . . (472

of the 7th order, being the transformations of planes.
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The twisted quartics of Art. 112 correspond to the conics on the STEINER quartic.
The sextic surface contains ten lines corresponding to the ten points in which the
plane intersects the critical curve of the tenth order, for to every point on that
curve corresponds a two-system of functions or a line in the space p (Art. 109).
Again, the sextic contains an infinite number of twisted cubics corresponding to the
lines in the plane which pass through one of these ten points (Art. 113); and it
likewise contains 45 conics answering to the connectors of these points. More
generally (Art. 113) a conic through five of these points transforms into a twisted
cubic, and similarly for other cases.

120. When we express that the twisted cubic (449) is plane, the condition

(PopupPeps)=0. . . . . . . . . (473)

is of the tenth order in ¢" and of the sixth in ¢, which latter point we may suppose
to be oun the critical curve. This condition will then represent a cone of the tenth
order of the lines through the point ¢ which transform into plane curves in the
p space.  But this cone must consist in part of the cone of the ninth order containing
the critical curve. The remaining part is a plane, and every line in this plane
through ¢ transforms into a plane cubic.

In particular, an arbitrary plane cuts the critical curve in ten points and intersects
ten planes of the type just mentioned in lines which transform into plane cubics on
the sextic surface. Here again is a point of similarity with the STEINER quartic, for
the plane containing one of these cubics cuts the sextic again in another cubic.

121. Corresponding to a plane [p;p,p,] in the p space there is a Jacobian quartic

(@ f(pa)s S(pag) S(psg)) =0 . . . . . . (474)

in the ¢ space, the locus of united points of functions of the three-system determined
by points in the plane. All these quartics intersect in the critical curve (437).
In like manner to a line in the p space corresponds the twisted sextic curve

lo./(p), flp)l=0. . . . . . . . (475),

the locus of united points of a two-systen.
The locus of Jacobian correspondents of points in the plane is the sextic curve

LS (pg), S(pg)s Jps)l=0. . . . . . . (476).

Now any one of these sextics is the residual of the critical curve in the intersection
of a pair of Jacobian quartics, and a curve meets its residual in ¢ points, where

r+i=mptrv-—-2). . . . . . . . L (477).

In particular for » =40, m == 10, p =v =4, we have #==20; and so there are

20 2
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twenty intersections, but I propose to show that these in reality correspond to ten
_ contacts.

Take, for example, the curve (476), and let ¢, be a point of intersection and take
1 to be the Jacobian correspondent of ¢, so that f(p,, ¢;) = 0. Then the tangent to
the curve at ¢, is

L) S ) Spsg)] =0 oo (478),

But this tangent lies in the tangent planes at the same point to the system of
quartics (/' (p1q), £ (929)s f (psq), J (pq) + uq) = 0, where v is arbitrary, and as these
quartics contain the critical curve, the sextics touch this curve where they meet it.

122. Hence, the locus of the Jacobian correspondents of points on the critical curve
is @ curve of the tenth degree; for in the plane [p p,ps] there are ten points which
are Jacobian correspondents of points on the critical curve.

The Jacobian quartic of the plane [ p,p,p;] contains ten lines.

The tangent plane to the Jacobian quartic at a point on the critical curve, corre-
sponding to one of the ten points just mentioned, intersects the plane of Art. 120 in
a line which transforms into a plane cubic on the sextic surface into which the
tangent plane to the quartic transforms. But the quartic transforms into a tangent
plane to this sextic, and therefore contains the cubic, consequently the quartic
contains the line. |

123. We shall now consider the orders of the surfaces and curves into which given
surfaces and curves are transformed by the relation connecting p and ¢ (434).

With an arbitrary surface Q = 0 in the ¢ space is associated a complementary
Q' =0, so that the points of the two surfaces compose tetrads of united points of
functions of the four-system. These two surfaces, of orders m and m' respectively,
transform into a common surface of order 7.

An arbitrary line in the p space cuts the surface (n) in # points, and to these
correspond 4n points in the ¢ space situated on a sextic curve (475). This curve cuts
the surface Q in 6m points, and these are generally united points of 6m distinct
functions, because the surface Q is arbitrary. Hence n = 6m.

Again, the sextic cuts the surface Q' in 6n/ points, but these fall into triads of
united points complementary to the Gm points. Hence n = § 6m'; and we have the

complete formula
n=~0m=2m" . . . . . . . . . (479)

More generally, if the surface Q is wholly composed of sets of » united points,

6m 6m/

n = (480).

v 4d=—v
There is a case of exception for a Jacobian quartic (¢, f(piq), J(p:), f(ps2)) =0
which transforms into a plane and not a surface of the sixth degree as (480) would
cive for v =m = 4. But here the sextic curve cuts the quartic in 4 points and
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touches 1t in 10 points on the critical curve (Art. 121), and the four points correspond
to the intersection of the line with the plane in the p space, while to the ten points
correspond lines of the type mentioned in Art. 109. We learn, therefore, that an
arbitrary right line in the p space intersects ten of these lines, and that they compose
a critical surface of the tenth order. This is otherwise justified from the considera-
tion that an arbitrary quartic transformation converts a plane into a surface of the
sixteenth order; and the fact that a plane transforms into a sextic shows that a
critical surface of the tenth order has been discarded.

The equation of the complementary of the Jacobian J (¢) = 0 will be found in
Art. 127,

124. In like manner, taking an arbitrary curve in the ¢ space of order M, let its
complementary be of order M’, and let both transform into a curve of order N. The
curve, being arbitrary, will not intersect the critical curve, and the 4M points in which
it cuts the quartic, transformed from an arbitrary plane in the p space, will correspond
point for point to the N points in which the transformed curve cuts the plane. Thus
N =4M.

Consider further the intersections of the curve and its complementary with an
arbitrary surface (m) and its complementary (/). The curve meets the complementary
of the surface in M/ points, and the complementary of the curve meets the surface
in M'm points. In general, each point of one set corresponds to one point of the
other set, and the two sets compose pairs of united points. Thus Mm’' = M'm, or
M’ = 8M by (479); and accordingly we have the complete formula

N =4M = 4?’

The whole set of points of intersection of the curve and surface and their com-
plementaries is arranged as foliows :—The Mm points unite with 3Mm of the M'm/
points in Mm tetrads. The Mm/ points and the M'm unite with 2 (Mn/ 4 M'm) of
the M'n/ points to form tetrads, and thus by (481) and (479) all the M'm’ points are
exhausted ; and there are but 4Mm (= Mm + Mm/ 4+ M'm) tetrads. But the curve
(N) intersects the surface (n) in Nn = 4M X 6m points, and consequently there
remain over 20 Mm points, which are critical points on the transformed curve and
surface. These points evidently must lie on the critical surface of Art. 123,

When a curve is wholly composed of pairs of united points, the order of the
transformed curve is N = 2M, and from symmetry the order of the complementary is
M =M.

An arbitrary surface and its complementary do not intersect in a curve wholly
composed of pairs of united points, though of course the curve of intersection will
contain all the pairs of united points which lie on the surface. It does not seem to
be easy to assign any general relation connecting the order of a curve of this nature
with that of its transformed curve. Thus 7 is the order of the curve transformed
from the cubic intersection of a plane with its complementary (Art. 116).

(481).
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125. We may account for the curve of intersection of the pair of sextics derived
from two arbitrary planes in the following manner.

Call the two planes P and P, and their complementary cubics C and €. The
complementary of the line (PP’) forms part of the intersection of the cubics C and (7,
and this curve is a cubic (481). There remains, therefore, a sextic as part of the
intersection of C and C'. The complementary of the cubic curve (PC’) is a curve of
the ninth order, part being the cubic (P'C), and the remaining part the residual sextic
on Cand V. This sextic is wholly composed of pairs of united points. The line and
its complementary cubic transform into a common quartic. The cubic (PC’), the
cubic (P'C) and the residual sextic transform into a common curve of order
3 X 4=2X 6=12 (compare the last article). Thus we can only account for a
curve of order 16 (= 4+ 12), and the sextics consequently intersect in a singular
curve of order 20.

126. The complex of lines jorning pairs of wnited points is of the fourth order.

If ¢ and b are any two points on a line joining united points,

S(pa)=zadyb, f(p,b)=rza4wb . . . . . (482),

where p determines the function. The theory of quaternion arrays allows us to
write the condition that these two equations should be simultaneously satisfied in
the form®

/ff(aloa) J(e) fe) flea) o b0 Oj‘

-
H

< _ =0 . . (483)
LA (ed) fleb) fleh) fleb) 0 0 a D]

where ¢, ¢,, ey, e, are arbitrary quaternions; and by the rules of expansion of arrays,
this equation is equivalent to

4 (flew), feya), a, b) (fegh), f(ed), a, b)=10 . . . (484),

where the signs follow the rules of determinants. As this is of the fourth order in

« and b, and also combinatorial with respect to both, it represents a complex of the
fourth order.

127. By (433) and (434) we have
Spg)=qJ (@), p=H ). . . . . . . (485);

and throughout this article we shall suppose p expressed as a quartic function of ¢.
One root of the latent quartic of f'(pq) is thus equal to J (¢), so that when we
substitute in the equation of that quartic (Art. 103 (420)), we have identically

@) = T (@ 17 (0)+ T @1 (p) =T () (p)+ L (p) =0 . (486).

* The equations of the various assemblages of chords of Art. 113 iuay also be discussed by the aid of
arrays.
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The direct interpretation of this identity is that the transformation converts the
Jacobian I (p) = 0 into two surfaces, one being the Jacobian / (¢) = 0 and the other
the surface of the twelfth order

S = TP 1" (p) + TN (p) =1 (p)=0 . . . (487).

This surface is the locus of three of the united points of functions which have a
zero latent root, the fourth united point lying on the Jacobian J (¢) = 0.

The critical curve is triple upon this surface, and the surface meets the Jacobian
again in a residual curve of the eighteenth order, which is the locus of wnited points
corresponding to a double zero r00t.

128. Making the substitution s =¢— J(¢) in the latent quartic of the function
J(p, q) the equation reduces to

st 80 (4 (q) = I (p)) + (6 (q) = 31" (p) T (9) + 1" (p))
+ s (4T (q)" = 81" (p) J (9 + 21" (p) J (q) — I (p)) = 0 . (488).

A second root of the original quartic is equal to J(q) if

4T (Y = 317 (p)J (9 + 21" (p) S () = I'(p) =0 . . . (489)

and this is the locus of wnited points which correspond to double latent roots. This
surface is of the twelfth order, the critical curve is a triple curve upon it, and it
meets the Jacobian in the same curves as (487).

The locus of united points corresponding to triple latent roots is the curve of
intersection of this surface with the surface of the eighth order

6.7 (q) — 31" (p) T () +T"(p)=0. . . . . . (490).

But the critical curve is double on this surface, and accordingly it counts six times
in the intersection, so that the locus of triple united points is a curve of order
36 (=8 X 12 — 6 X 10).
129. Further, quadruple united points are the points common to the surfaces (489),
(490), and
4 (q)—=1"(p)=0 . . . . . . . . (491),

which do not lie upon the common critical curve.

In order to calculate the number of these quadruple points it is necessary to find
the number of points common to the critical curve and the curve locus of triple
points. Now 24 (=4 X 3 X 2) functions have triple zero roots, this being the
number of points common to the surfaces 7 (p) =0, I’(p) =0, 1" (p)=0 in the p
space ; and the curve locus of triple points being of the 36% order meets JJ (¢) = 0 in
144 points. Subtracting 24, there remain 120 points on the critical curve.

The triple curve therefore intersects (491) in 24 quadruple united points, and in
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120 points on the critical curve; and thus twenty-four functions of the system have
Jour equal latent roots and four coalesced united points.

130. Again, suppose that two roots of (488) are zero and that the remaining two
are equal. In this case

8J (¢ =4I (N1 (p) + 41" (p)—1"(p=0 . . . (492);

and this equation, combined with (489), gives a curve locus of order 36 (=8 X 12
— 2 X 3 X 10), which is the locus of united povnts of functions whose rcots are equal
wmn parrs.

We have now outlined the general theory of the four-system, but in a later section
some supplementary remarks will be made on this subject.

SECTION XVIIL
Tae QUADRATIC TRANSFORMATION OF POINT3 IN SPACE.

The Second Example of the Use of the Bilinear Function.

Art. Page
131. The quadratic transformation p=f (g9). The cctads of points P 10
132. A line transforms generally into a conie, but into a line if it is a connector of points

of an octad, or (what is cquivalent) of Jacobian correspondents f (pg)=0.

Harmonic properties . . . . . . . . . . . . . . . . . . . . . 30
133. The limiting points into which Jacobian correspondents transform . . . . . . . 305
134. The arrangement of connectors and Jacobian correspondents in a plane . . . . . 306
135. The points of an octad and the twenty-eight connectors . . . . . . . . . . 3006
136. A plane transforms into a STEINER’S quartic . . . . . . . . . . . . . . 307
137. Geometrical relations. The conics of ring-contact . . . . . . . . . . . . 307
138. The focal points on a ray of the congruency of connectors . . . . . . . . . 308
139. The orders of complementary loci and of the loci into which they transform . . . 309
140. The complementary of the Jacobian is the foeal surface of the congruency of

CONNECLOTS . . . . . . . e e e e e e 310
141. The focal surface of the transformed connectors is the transformed Jacobian and the

reciprocal of a symmetrical Jacobian . . . . . . . . . . . . . . . . 310
142, The numorical characteristics of the two congruencies . . . . . . . . . . . 311

131." The general quadratic transformation in space is represented by the equation

p=flgg) oo o oo (493),

i which it is obviously permissible to regard the bilinear function as permutable, or
the four linear functions (409) as self-conjugate. The transformation involves 40
constants.
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To a plane in the p space corresponds a quadric, or

Slp =0, Sif(ee)=0 . . . . . . . . (494

transform one into the other; and thus to one point p correspond eight points ¢—
the intersections of three quadrics—and to one point ¢ corresponds in general one
point p.
We use the word octad to denote the group of eight points corresponding to p.
132. The right line ¢ = a -+ ¢b transforms into the conic

p=flag) + 26f (@) + £FGL) . . . . . . (495),

and f(aa) and f(0D) are two poinfs on the conic, while f(ab) is the pole of their
chord.

The condition for the collinearity of these three points is

LS (), flab), fOO)]=0. . . . . . . (496);
and this equation may be replaced by

S(aa) + (x4 ) f(ab) + @yf (00) =0, or f(a+ x‘b, o+ yb) =0 . (497);

and this expresses that the original line joins Jacobian correspondents. Thus lines
jotming Jacobian correspondents transform into lines,
In this case (Art. 104) of the permutable function, if

Sry=0=,0"") . . . . . o . . (498),

the points 7 and +/ are conjugate to every quadric of the system (494).
We may replace (498) by

S, r o) = f(rr)+ tzf("r’r’) Coe e (499),

or points harmonically conjugate to o pair of Jacobian correspondents transform into
a single povnt.

Thus we may speak of the rays of the assemblage of lines represented by (496) as
connectors, (1) of a pair of Jacobian correspondents, (2) of a pair of points of an octad,
(3) of an infinite number of pairs of points of octads.

It is evident that when two points of an octad coincide, they unite on the
Jacobian ; and that every point on the Jacobian is the union of a pair of points of an
octad.

188. The Jacobian correspondents transform into limiting points, separating the
pownts derived from real from those derived from imaginary points.

The points on the transformed connector

p=fr)y+sfe). o o . o . . . . (500)

VOL, CCL—A., v 2 R
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are transformed from the points » 4+ +/s7/; these latter are real if s is positive ;
otherwise they are imaginary.

To discriminate between the outer and the wnner region on the line (500), observe
that the vectors from the centre of reciprocation to the limiting points are

B S /1 ) B

PR P TR
and that the vector to the point p is

VA 4 SVEO) S ks SO o
S (rr) + sSf (') Sf (rr) -4 $Sf (')

The point P lies on the inner region if Sf (rr) and s8f (") are of like sign; and
the inner region corresponds to real points if the points » and " are either both
inside or both outside the quadric

op

SF(g)=0 . . . . . . . . . . (303).

This quadric is the locus of points projected to infinity; it may of course be
imaginary, so that Sf (7) and Sf (+”17) are essentially one-signed if 7 and + are real.
In this case the region is always inner. If the quadric is real, the points » and #/
(if real) cannot both lie inside, for they are conjugate to it. The nature of the
intersection of a line with this quadric contrels the nature of the conic into which
it 1s transformed.

134, The locus of the Jacobian correspondents of points in a plane is a sextic
curve, and for the permutable function this sextic cuts an arbitrary plane in points
which correspond in pairs. There are therefore three connectors in a plane.

The vertices of the triangle of connectors belong to the same octad ; for if ¢, is one
vertex and ¢, and ¢, the points, one on each of the connectors through ¢, which
(Art. 132) belong to the same octad as ¢, then ¢, and ¢; belong to a common octad,
and their line is a connector—the third connector in the plane.
~ We may suppose the weights of the points ¢, ¢, and ¢, chosen so that the
Jacobian correspondents are

Gtgs e e oo (304)

the vertices of the triangle being (Art. 132) harmonically conjugate to these points
In pairs.

135, Let the eight quaternions which represeht points of an octad have their
weights chosen so that*

po =S (1)) = f(q292) = &e. = [ {gsqs) - - - - - (505),

¥ Tt follows from Art. 132, that this convention is the same as that made at the end of the last-article.
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and let the twenty-eight points f (¢,g,) be denoted by

Pro=f(019s), e prg =f(g7(18) o (506).

Tt may be remarked that these relations lead to

+ 2\/‘:‘71)12 =f(q + \/ﬂ:T%; ¢ % ‘/777‘"_192) coe . (307);

so that the points (506), although real, if the points of the octad are real, have been
transformed from imaginary points, and consequently do not lie in the same region
(Art. 133) as the point p,.
The Jacobian correspondents transform into p, 4 py,, &e.
186. A plane transforms into a STEINER'S quartic.
~In the notation of the last article, the plane

g=1tq, + gy +tqs . . . . . . . . (508)

transforms into the surface
P = po (67 17+ 17) + 2pastals + 2patsts + 2phity - . . (509);
and if we write the identity connecting the five quaternions in the form

P =P+ Pos® + Py Pz . . (510)?
comparison with (509) gives
Qeyew = Y% + 2 + 2 . . . . . . . (511)

on elimination of the parameters t. This is the scalar equation of the surface (509),
and the existence of the three intersecting double lines (y, z; 2, «; and «, ), which
characterize a STEINER'S quartic, is manifest.

Evidently the three connectors transform into the double lines; and the points
Po = Pasgs Po & Pars Po + P1y separate (Art. 133) the lines into regions intersected by
a pair of real and a pair of imaginary sheets of the surface.

187. The nature of the surface into which a plane transforms may be established
from purely geometrical considerations. A tangent plane to the surface transforms
back into a quadric touching the plane, that is, cutting it in a pair of lines. These
lines transform back into conics in the tangent plane and on the surface. One point of
intersection of these conics corresponds to the point of intersection of the lines.
The other three points must result from the union of pairs of points of octads, and
therefore the lines must cut the sides of the triangle in points harmonically conjugate
to the Jacobian correspondents. The conics consequently intersect the lines into
which the three connectors transform, and these three lines must be double. In terms

* Tt is easy to verify this by determining the greatest and least value of ufs (£22+£52)™? for real values of
ty and #5.  Compare (509). ' }
2R 2
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of the parameters, the equations of a pair of lines transforming into conics in a
common plane must be

uty - ugty Fugt, =0, Dl boo. . . (512);
U, Uy Ug

this is a consequence of the harmonic section. Two lines thus related may be said to
be conjugate, and there exist four self-conjugate lines

Lttt =0 . . . . . . . . . (513),

any one of which transforms into a conic having ring-contact with the quartic. The
planes of these four conics transform back into cones, touching the plane along the
self-conjugate lines. The self-conjugate lines join triads of non-corresponding
Jacobian points, such as ¢, 4+ ¢,, 93 + ¢5, ¢5 — ¢\

It is easy to see that the four conics are inscribed to the faces of a tetrahedron,
and that each touches the other three. Consider, for example, the conics transformed
from the sides of the triangle, ¢, + ¢5, ¢5 + ¢1, ¢, + ¢».  The equation of one conic is

p=f+a+t(B+9), +a+1t(+9))
= 2 (py + Pag) + 2t (Po + Pas + Par + Pi2) + 20 (po +p51) - - (514);

and this shows that the conic passes through a limiting point on each of two of the
double lines ; and as the pole of the chord is symmetrical with respect to the suffixes,
it is likewise the pole of corresponding chords for the conics into which the other
sides of the triangle transform.

It is not difficult to prove that every line in the plane through one of the six
Jacobian points transforms into a conic having a fixed tangent. The tangent for
the point ¢, + ¢, 1s

p=potpuot+t(Ps+py) - - - « o o o (515)

138. Let a connector meet the Jacobian in the points «, ¢, b and ¢, « and o' being
correspondents so that f(aa’) = 0; let I/ and ¢’ be the correspondents of b and ¢; and
consider the points of an octad in the plane [0’aa’]. The two connectors aa’ and bV’
in this plane intersect in the point 0, and as b is its own harmonic conjugate with
respect to b and U/, two sides of the triangle of Art. 134 unite in the line aa’. Let
b, be the harmonic conjugate of b with respect to @ and o/, then b, is a vertex of the
infinitely slender triangle, the remaining two being the point b counted twice.
(Compare Arts. 132 and 134.)

The point b, being the intersection of the conmector a¢’ with a consecutive
connector, is a focal point on the ray ad’ of the congruency (496) ; and similarly ¢,
the harmonic conjugate of ¢ to « and o/, is the second focal point; and by
Hamrnrons theory the ray touches the focal surface at these two points.®

* This theorem of the construction of the focal points is an extension of Mr. RussELL’s theorem for the
congruency of lines joining corresponding points on the Hessian of a cubic surface. R. RUSSELL,
3 Y J g P 8D
“Geometry of Surfaces derived from Cubics,” ¢ Proc. Roy. Irish Acad.,” vol. 5, p. 464.
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In this case the plane transforms into the surface

p=f (604 th, + b, 6.0+ b, + t0)
= 12 (0b) + 1, (D) + t2F (VV) + 205 F(BY) + 201t f(0D,) . (516),

and if - we take (as we may) f(bb) = f(b),), the scalar equation of the surface takes
the form

doyPw = 42%* + o', where w =1t +1,°, x = 1% y = 2,8, 2 =244, (517).

On comparison with (511) we see that two of the lines of the STEINER'S quartic have
united ; for = 0 we have the line @, y counted four times.

139. By a process similar to that of Arts. 123 and 124, but much simpler, we can
determine the order (m') of the complementary of a surface of order m, and the
order (1) of the surface into which both transform. The formula is

N )

v 8§ — v
where » is the number of points of octads of which the surface is wholly composed.*
And this formula is proved without trouble, remembering that a line in the p space
transforms into a twisted quartic—the intersection of two quadric surfaces.
In like mannert for a curve (M), its complementary (M') and its transformed (N),

2M _ 2M/

S=o =N (519),
Thus the complementary of a connector is a twisted cubic ;f the complementary of a
plane is a surface of the seventh order, which cuts the plane in the triangle of
connectors and in a quartic-—probably the four lines of Art. 137.

The formulee of this article are not directly applicable to the Jacobian, which is a
critical surface of the transformation. The twisted quartic into which a line in the
p space transforms, cuts the Jacobian in 16 points and does not in general touch it.
For if it did the twisted quartic would have a double point. Consequently, the
Jacobian transforms into a surface of the sixteenth order. Tvery point on the

* For the general transformation of order p, the relation is

1 For a transformation of order g,

1 For example,
_> Qn,
L

g In

Q—EAVQV—f—,Where =2 4

1 %= 1Yn

is the equation of the twisted cubic through six points 91 @2+ + - G, and it is not difficult to verify that
this curve and the line ¢ = g7 + fgs transform into a common line p = py + {prs if the eight points form an octad.
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Jacobian is the union of a pair of points of an octad (Art. 132), and therefore the
complementary surface is composed of hexads of points of octads, and its order is
consequently 24, or six times that of the Jacobian, because the quartic cuts it in a
hexad for every point of intersection with the Jacobian. v

140. The complementary of the Jacobian us the focal surface of the congruency of
connectors.™

When two points of a set transforming into a common point approach coincidence,
they close in on the Jacobian, and simultaneously the remaining points of the set
reach the complementary surface. Through any one of these remaining points two
consecutive connectors pass; and therefore, by Haminron's beautiful theory, the
remaining points are jfocal points on the rays connecting them to the coincident
points.

Every ray touches the focal surface in two points—the two focal points on the ray ;
and for a quadratic transformation it cuts that surface in twenty other points. Zhese
tiwenty points are harmonically conjugate in pairs to the Jacobian correspondents.
For (Art. 132) the harmonic conjugate of any one of the points belongs to the same
octad as that point ; but the focal surface is complementary and is wholly composed
of hexads of points of octads, and therefore the harmonic conjugate is also on the
focal surface.

141, The focal surface of the transformed connectors is the transformed Jacobian.

On transformation the harmonic conjugates on a connector unite. In the notation
of Art. 138, the point b and the focal point b, unite in a focal point of the trans-
formed connector, for through b, pass two consecutive connectors which transform
into consecutive connectors through f(b,). Similarly the points ¢ and ¢, transform
into the second focal point and the transformed Jacobian is consequently the focal
surface. The twenty points of the last article transform into ten points. The
Jacobian correspondents « and ¢ transform into limiting points (Art. 133). Thus we
have accounted for the sixteen points in which the transformed connector meets its
focal surface.

The class of the transformed Jacobion ts n' = 4. In the p space draw a plane
through an arbitrary line to touch the surface. This plane contains a pair of
consecutive transformed connectors, and on passing back to the ¢ space it becomes a
quadric containing consecutive intersecting connectors. This quadric is therefore
a cone. The system of planes through the arbitrary line transforms into a system of
quadrics through a twisted quartic, and four of these quadrics are cones. o these
four cones correspond four tangent planes to the focal surface through the arbitrary
line. Hence we may write down the equation of the reciprocal of the transformed
Jacobian. The condition that the quadric S/ (gq) = 0 should be a conef is

* This theorem is true for the connectors of a set of points to a coincident pair of the set for all
transformations. ' :

T I f(g9) =ZaSqfig, then f’ (Ig) =Zf1gSla.
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Sl =0 . . . . .. . ... (520),

where 7 is the vertex, for the tangent plane SIf(gr) = Sqf” (Ir) = 0 must vanish
identically. Hence the fourth invariant of f” (/r) must vanish, or

(f"(a), f1(I0), f'(le), f7(d)=0 . . . . . (521),
and this is the equation of the reciprocal of the surface.
Thus the transformed Jacohian is the reciprocal of a Jacobian surface, but one of
less generality than those previously considered. We may replace (520) by four
equations

CSUf(ra) =0, SIf(b) =0, Blf(r)=0, Slf(rd)=0 -. . (522);

and because f is a permutable function, on replacing = by xa 4+ yb 4+ zc + wd and
eliminating @, v, z and w, we obtain the symmetrical determinant

SUf (ac),  SUf(ab), Slf(ac), Sif (ad)
CSIF(eb), SIF(OL), S (be),  SIF(bd)
), SUF(be),  Sif(ce), SIf(ed)
SIf(ad), SIF(bA), SIf(ed), SIF(dd)

(523).

But (‘Three Dimensions,” Art. 528) a surface, whose equation is a symmetrical
determinant with constituents linear in the variables, has ten double points. This
accounts for the class of the surface being 16 instead of 36 (= 4 (4 — 1)*).

In the case in which the function is self-conjugate as well as permutable, that is
when p, ¢ and 7 may be transposed in Spf (¢7) in any manner, we have the theory of
the corresponding points on the Hessian of the general cubic surface

Sqf(qq) =0

and Mr. RUssuLL'S paper may be referred to for various examples.

142. The characteristics of the two congruencies are found thus. The order of the
congruency of connectors is obviously u = 7, as seven connectors can be drawn from
an arbitrary point to the remaining points of the octad to which the point belongs. -
The class is » = 3, for three connectors lie in a plane. The order of the focal surface
(Art. 139) is M = 24. Tts class is N == 16. This follows from the relation (* Three

Dimensions,” Art. 510)
M—N=2(m-—v») . . . . . . . . (524);

or independently by Mr. RusserL's elegant method™® which is applicable in this more
general case.

For the transformed congruency, the order is p' = 28 (Art. 135), the order of the
focal surface is M/ = 16, and its class is N’ = 4 (Arts. 139, 141); and therefore (524)
the class of the congruency is v = 22.

* ¢«Proc. Roy. Irish Acad.,” vol. b, p. 473.
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Consequently twenty-two connectors are generators of a quadric S/f(¢q) = 0; and
in particular the polar quadric of a point with respect to a cubic surface contains
22 generators joining corresponding points on the Hessian,

SECTION XIX.,
Homograruy or PoiNTs 1IN SPACE.

The Third Example of the Use of the Bilinear Function.

Art. Pago
143. The relation f (pg)=7 establishes a one-to-one correspondence hetween the points p

and ¢ when 7 is fixed . . . . 2 1
144. The homograph of a line is a thsLed cuby‘ A line breaks off for every intersection

with a critical twisted sextic F, (=0 . . . . . . .o 312
145. The homograph of a plane is a cubic surface mtelsectmg the Jacobldn ] ( p) Oina

critical sextic F, (#)=0 and a residual curve £,/ ()=0 . . . . B 1
146. The lines on the cubic surface. The schemes of the double-sixes a,nd triple tangent

planes . . . . . . . - )
147. Points on a critical sextic and then line homooraphs e e . . 314
148. The complex of connectors of points with their homomaph< and t;he congruency of

bi-connectors . . . . . .. .. . . 315
149. The congruency of J acoblan connoctors fm the general lnhnear functlou ... . 316

143. Writing generally
Sflpg) =r or {f(pg)r}=0 . . . . . . (525),

and regarding = as a constant quaternion, a one-to-one relation is established
between the points p and g, so that one may be said to be the homograph of the
other.

This is equivalent to three relations of the form

Spfig =10, Spfyg=0, Spfyg=0 . . . . . (526);

and accordingly the bilinear function is not utilized to its full extent, but it seems
to be the most convenient instrument for investigating the subject.
144. We have generally in the notation of Arts. 107, 108,

¢L(p)= L, (), pJ(q)=L,@) . - o . (527),
and thus the critical curves of the transformation are

F,(ry=0 and F,(r)=0 . . . . . . . (528)
respectively ; or (compare (437)) |

((r, S (pa)s S (D), S (pe), S (ped)))=0 and (v, /' (2q), S (bq), S (¢q), S (d))=0 . (529)-
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These curves are sextics, and because (528) may be replaced by

L7 (o) S” (oo, S (o) = 0, L (), S (), S () 1= 00 (530),

where [7793] = 0, they may be described as the locus of Jacobian correspondents
of points in the plane reciprocal to the point 7 (424).
As in Art. 109, when a point (¢) is on the eritical curve, its homograph is a line

pJ Q) =1tG, (r) + F)(p), F,(r)=0 . . . . . (531),

and not a point; and as in Art. 112 the homograph of a line ¢ + x¢’ is a twisted
cubic
p=(popipap:sXel)e o o o oo oL (532);

and a line of the type (531) breaks oft the cubic for every intersection with the
critical curve.
Thus, when the line is a chord of the critical curve, its homograph is also a line,

so that
flp+ap, g+ag), 7y =0. . . . . . . (533)

Symmetry shows that p 4+ ap’ must be a chord of the second critical curve.
If the homograph of « line is plane, @t s at most a conic.  For the condition

of planarity (compare Art. 120) ,
(Popipaps) =0 . . . . . . . . . (534)

is of the sixth order in ¢ and in ¢/, and this equation vepresents a complex of the
sixth order. But this complex can include nothing except intersectors of the
critical sextic, for the cone of intersectors from the arbitrary point ¢ is of the sixth
order. -
The ruled surface of triple chords has been noticed in Art, 75.
145. The homograph of a plane

Slg=0 1s SIF,(ry=0 . . . . . . . (33)),

a general cubic surface through the critical curve.
This cubic surface also passes through the sextic

F'h=o0. . . . . . . . . . . (536),

and 1t intersects the Jacobian [/ (p) = 0 in this sextic and in the critical curve.
The equation of the Jacobian may be written in the forms

S () By () =SF() B/ Q) =I(p)Slr=0. . . . . (537),

and for [ and #, both variable, the curves F, (r) = 0, F,/ (I) = 0 generate the Jacobian
in a manner analogous to the double generation of a quadric. Since the rank of the
sextic is 7 = 16 (Art. 64), the two curves intersect in 14 points (477).

VOL. CCIL.—A. 28
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146. It may be of interest to show how we can fully account for the lines on the
cubic surface (535). Let the six points in which the critical curve ¥, (r) = 0 cuts
the plane Slg = 0 be denoted by the symbols 1, 2, 3, 4, 5, 6 ;. and let (12), (23), &c.,
denote the fifteen connectors of these points. Further let [1], [2],...[6] denote
the six conics that can be drawn through all but one of the six points.

The curves and points represented by these 27 symbols transform into the lines on
the cubic. By (531) and (533) we account for the lines and the points. In general
a unicursal curve transforms into a curve of thrice the crder, but for every inter-
section with the ecritical curve a line breaks off. Thus the six conics likewise
transform into lines.

Any pair of these loci, which intersect in a point which is not critical, continue to
intersect after transformation, and this consideration enables us to write down the
full scheme of double-sixes on the cubic surface. These fall into three types :—

(12 8 456
1 121 31 s e
L2 3 (56) (64) (15)
U og) ) (2 [0 D5 [6])

L[] (23) (24) (25) (26)
Hi. <2 2] (18) (14) (15) (‘I,(j)>'

In these schemes, every line represented by a symbol in one row intersects every
line in the other row, except that denoted by the symbol in the same column. There
are thus 36 double-sixes; one of the first type, twenty of the second, fifteen of
the third.

The schemes are easily obtained by taking two non-intersecting lines, say 1 and [1],
when we have '

I intersects (12), (18), (14), (15), (16), (2], [3], [4], [5], [6],
(1] ., (12), (18), (14), (15), (16), 2, 3, 4, 5, 6,

and, discarding the common lines, the double-six is found. In like manner the
45 triple tangent planes belong to one or other of the types

(L2} (12)) o ((12), (34), (56))

147. One or two relations respecting a point on a critical curve and its line
homograph may be mentioned. Since the line (531) has a point for its homograph, it
must be a triple chord of the sextic {7, (r) = 0. It meets this sextic in three points,
1> Pas Psr and intersects the Jacobian in a fourth point p, or F,(p). To the three
points p,, P, py correspond the three triple chords of the. g sextic which pass
through ¢; and the homograph of every plane through the line p, p,, py 18 a cubic
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having ¢ as a double point and containing the three triple chords which pass
through ¢.

The cubic homograph of any plane contains the critical sextic which counts thrice
in its intersection with the octic surface of triple chords, and the remainder of the
intersection consists of the six line-homographs of the critical points in the plane.

The homograph of the surface of chords of the p sextic, which meet the line p,p,p;,
is the cone whose vertex is ¢ and which contains the ¢ sextic. ‘

The homograph of one sextic is the surtace of triple chords of the other.

One chord can be drawn to meet two non-intersecting triple chords in points not on
the sextic. Its homograph is the line joining the homographs of these chords.

~ The locus of the points ¥, ( p), the Jacobian correspondents of points on the critical
curve, is a curve of the fourteenth order. For the octic surface intersects the Jacobian
in the second critical curve counted thrice, and in a residual curve of order 14.

148. Connectors of points with their homographs compose the complex of the

sixth order

(S (pp), S (pq), flap), v) (f(pq), flap), f(q9),7)
= (f(pp), f(p9), Fq9): ) (f(pp), flap), f(qq9), r) . (538),

as appears on elimination of x, ¥, z and w from
Slp +yg, wp+wg)y=or. . . . . . . . (539).

Or in other words, this is the assemblage of lines which meet their twisted cubic
homographs.

The condition that two pairs of homographs should be on the same line is

(f(pp), f(p9)s flap)s fqq), 7)) =0 . . . . . (540),

for if two sets of values of «, y, z, w satisfy (539), the five quaternions included in
(540) must be co-planar. Now (540) imposes two conditions on the line pg, and
therefore represents a congruency of lines; and from the conditions implied in (540)
we can select but two combinatorial functions with respect to p and ¢. These are

(S (pp), f(r9) fap), f(99)) = 0, (f(pp), f(pq) + [f(qp), f(q9), 7) =0 . (541);

‘and the congruency is therefore common to two comiplexes of the fourth and third
orders respectively. But these complexes contain the congruency

Lf(ep), S (pg) +S(ap) Sla)]=0 . . . . . . (542),

and this is foreign to the question, being, in fact, the congruency (496) of Art. 132 of

connectors for the permutable function f(pq) + f(gp). When this is rejected, there

remains the congruency of connectors of two pairs of homographs, and its order and
282
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class are p=5(=4 X3 —=7), v=9(=4 X 3 — 3}, for the congruency (542) has
been shown to be of the seventh order and third class.
Equations (541) being supposed satisfied, they are equivalent to

uy f(pp) + uaf (pg) + W f (qp) + s f(9q) = 0,
o f(pp) + o (f(pg) +/(qp)) +vsf(qq) =7 . o . . (543);

and multiplying the first by ¢ and adding it to the second, we find that ¢ must satisfy
the quadratic

(vy + tuy) (vy 4 ty) = (v - tu) (vy ) . 0 (544),

if the sum can be reduced to the form (539). The roots of this equation lead to the
determination of the two pairs of homographs.

The bi-connectors of homographs which pass through a point are double edges of
the cone of connectors of homographs, and those which lie in a plane are bi-tangents
to the curve enveloped by the connectors. This appears from the forms of the
equations (538) and (540).

149. The congruency of connectors of Jacobian correspondents is intimately
connected with the theory of the last article. ‘

We have already considered the case in which the function is permutable, but
matters now are much more complicated.

The congruency may be expressed by

S(pp) +uf (pg) +of (gp) +ueflqg) =0 . . . . . (545),

and 1t is obvious that it is included in the quartic complex, the first of (541), and it
1s easy to verify that it is also included in the sextic complex (538) and that no
matter what quaternion “r” may be.  Replacing uwv by w in (545) and substituting in
the equations of these two complexes we find that either w = uv, or else the lines must
belong to the congruency (540). In other words, the congruency of this article is
complementary to the congruency of the last as regards the two complexes. But the
rays of the former congruency count double as edges of cones or as tangents in
planes. Hence the order and class of the congruency under discussion are
p=14(=4X6—-2X5),r=06(=4X06-—2X09).

These numbers are exactly double the corresponding numbers for the permutable
function, and as regards the class there is no difficulty in seeing how this arises. In
general there are two sextic loci of Jacobian correspondents of the points in a plane
(528), and the connectors in the plane join the six points of one to the corresponding
six points of the other. For the permutable function the two loci coalesce, and the
number of connectors is halved.

Again, we may say that the lines of this new congruency through a point are fixed
edges of the cone (538), and the lines in a plane fixed tangents to a sextic curve,
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because they are independent of i; the lines of the former congruency are double
edges and double tangents. ,
We proceed to determine the class of the focal surface. The equations

(pgab) =0, f(py)=0. . . . . . . . (546)

require a ray to intersect the fixed line @, 0. Eliminating p, the equation of the

locus of q 1s
Slaq) + zf (aq) +uf (bg) = 0, v [f(gq), f(aq), f(bg)] . . (547);

and this (274) is a curve of order m = 11 and rank » = 48. But this curve is a
complex curve consisting of the line ab and a residual which intersects it in four
points on the Jacobian. The order and rank of the residual are m = 10, r = 40,
the rank being diminished by twice the number of intersections. The number (i) of
tangent planes through ab to this curve minus twice the number of intersections
gives the number of planes through ab containing consecutive rays. Thus the class
of the focal surface is N = 32, and its order (524) is M = 48. Every one of these
numbers is double the corresponding number obtained in Art. 142 for the permutable
function. |

For the sake of completeness we wish to show the nature of the assemblage of
lines common to the complex (538) and the second complex (541), as we have already
completely considered the lines common to the remaining two pairs. Evidently the
congruency of bi-connectors belongs to these two complexes and is counted twice
among their common lines. There remains an assemblage of lines of order
p=38X6—2X5=38,andofclassy =3 X 6 -2 X 9=0. Itis easy to prove by
the method of this article that these lines join an arbitrary point to the eight
correspondents of » in the quadratic transformation f( pp) = r.

SECTION XX,
Tare METHOD OF ARRAYS,

Applications to n-Systems of Linear Functions.

Art. Page
150. The expansion of arrays and the determination of the scalar coefficients . . . . . 318
151. Conditions that a function of an n-system should convert m quaternions into m others 319
152. Conditions for the conversion of m points into m others . . . . . . . . . . 319
153. Conversion of lines and planes into others . . . . . . R . 320
154, Relations connecting points with their transformeds when condltlons must be satlsﬁed

The three types . . . . . . . Coe e e 320
155. The critical systems for functions of an n—system The four' types e e o321
156. Conditions that a line may be destroyed by a single function of an n-system . . . 322
15%7. Conditions that a line may be destroyed point by point by an included m-system . . 322

158. The various methods of destroying a plane. The destruction of a hyperboloid
generator by generator. . . . . . . . . . . . . . . .. . ... 323
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150. We shall illustrate the method of quaternion arrays® by a few examples on
systems of linear functions. These functions may be supposed to be of the most
general kind, functions of a point in space of pu dimensions, but we pay particular
attention to the case of three dimensions.

An array of n rows and m columns vanishes if, and only if, the constituents in the

rows are connected by the same set of scalar coefficients «,, z, . . . «,. Thus
(a, ay ag. .. a,
b, b, b, ... b,
Won h L =0 (548),
Py Pay Ps -+ v Pu
T S
when
Swa, =0, Sab, =0, ... Sxr,=0. . . . . . (549).

It is proved in the memoir that the expansion of the array is of the formt

3 212(6‘1“2“3004} (bsbsbvbs) ce (1477,’~37 Loy Li s lw)

!( }7411’ +1 }7411 A }/)ug \
. . o

X j oo (B50);
. . . {
J

L Pani1 Tywiz o o T

and we take definitely m = 4n' + %", where n” =0, 1, 2 or 8. The number of
equivalent scalar conditions is 4m — n -+ 1 for the vanishing of a quaternion array,
and (u + 1) m — n 4 1 for an array of points in u dimensions.

The scalars x,, x,, &c., are determined when (548) 1s satisfied by the system of
arrays of m — 1 columns and n rows, of which this array

[ X0y 4 xotty, ag, . . . o, )
| 2y + @by, b, b |
'{l . ]( =0 . . . . . . (551)
| |
Layr +ayrg, 70 o0 o 7y )

is a type.

* ¢Trans. Roy. Irish Acad.,” vol. 32, pp. 17-30.
+ Every row must be represented in the expansion, and it may be gathered from the Memoir how to
expand if one row involves only four constituents. In this case the general method fails.
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. If all the minor arrays formed by omitting one column of (548) vanish, we ‘take any
two of these minors, and forming second minors-corresponding to (551) we obtain two
sets of relations (549), and so on in general.

151. In order to-find the conditions that a linear function of an n-system should
convert m given weighted points «,, . . . «, into m others, b, . . . b,, we write down
the array in m rows and n 4 1 columns,

(S Jay o fuay by

)
Jis Saty oty by |l
. S e =00 0 0 .., (bb2),
-
|
J

i

|

I

)

)

L jthI"//[ j;,(l”l . . j;l,(‘;b'ﬁl Z)//l
whose vanishing requires

2.133];61/; = b// . [ ee e (553).

The vanishing of this array requires 4m — n scalar equations to be satisfied. If
then n = 4m, the array vanishes without restriction, and a single condition must be
satistied for the vanishing of the arrays, such as (551),

‘( x frey + by foy oy

w frog + by foy o Juty

|
3 =0,&c . . . . (554),
] .

———————

Ly fitn + b fottn « o frlt )

and these determine the coefficients « without ambiguity.

Thus from a given 4m-system can be found one function which shall convert m
given weighted points into other given weighted points. (Compare Art. 3.)

152. When the weights are disregarded, the equations of condition are

S, fio, = y,by, S fiog =ygby, . . . Sxo i, =vyub. o .. (555);

and these furnish the array

[ fay fowy — o fuwy by 0 0. 00 )

| fas faas o faas 0 b 00|

SO S L=0. . . . (556),
|

L S .

U A% fot o o St O 0 0. .0, )

of m 4 n columns and m rows. Its vanishing requires 31 — 1 -+ | conditions to be
satisfied, and the vanishing of the minor arrays such as (551) requires a single
condition if n = 3m 4 1, and these definitely determine the function. Thus from
a (3m 4 1)-system can be found one function which converts m points to m others
when the weights are neglected. In particular, a linear transformation can be found
(out of the whole sixteen-system) to convert five points into five others (Art. 3).
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153, When lines are to be converted into lines, the conditions are

S fy =yl + oy Ve Rafud = b+ 20, o . .. (557),
and the array
(fay ey oo fuay DU 00 L
} Sy o fy 000 DU
‘\ . . . . . ° . . . . .
" fitw  foltu oo futw 0 0 0 0 ... 0,0V, 00
L i St fudy 00 0 0...0 0 0,0,

00 00
00 00
(558)

'
—— S

of n+4 2m columns and of 2m rows must vanish. The number of conditions is
6m — n 4 1. Thus a function of a seven-system and of a thirteen-system
respectively converts one and two lines into one and two others.

In like manner, when planes are to be converted into planes, the array is of
n 4 8m columns and of 3m rows, and requires 9m — n + 1 conditions for its
vanishing.

In general for space of u dimensions a function of an n-system is completely

defined if
n=p(m 4+ 2my + 8my+ &e)+1=pM4+1 . . . . (559),

which converts m, given points, m, lines, m, planes, &ec., into other given points,
lines and planes, &c.

154. We shall now suppose that the array (556) does not vanish without conditions
restricting the generality of the points. Let all the points except «, and b, be given.
It is sufficient to consider the cases in which the number of conditions does not
exceed three.

By the expansion (550) we have, if’ 3m — n 4+ 1 = », so that v conditions must be
satisfied, or if n =3m — v + 1 =3 (m— 1) 4 (4 — »),

S (1 (), S (), S5 (), D) (fulao), £ (a), S (as), 0y)
(foyn_s (clmml)a Sonea (Aun)s Fones (”//'—.1) bunr)
X {frsw—z <“uz):jl}w-l (“/". coer ./f.fi’/l——V“i‘l (Ct,-,,), Z)m} =0 ‘ ¢ ° (56())

For it is obviously no use retaining any term ( fi(@,), f; (@), f5 (), fu(ay)), in
which a b does not enter, as the minor array of this term has a column of zeros and
vanishes.

We thus have three types of conditions for » = 1, 2 or 3, and these are of the
forms, the functions I being linear,

I (Fya,, Fy,, Fya,, 0,) = 0;
1L [Fia,, Fy,, b,] = 0;
HL {Fya by =0 . . . . . . . . . . . (561)
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In type I, if @, 18 given, b, lies in a plane; and a,, lies on a general cubic surface
if b, is given.

In type II, if @, is given, b, may be any point on a line; and if b, is given, «,
may be any point on a twisted cubic.

In the third case, ¥ a,, = t4,, and either point is determined if the other is given.

There is no difficulty in applying this method to the case of Art. 153. We must,
however, include the case of four conditions being requisite. The last line must
belong to a complex, a congruency, a ruled surface, or be one of a definite number
of lines.

155. We shall now consider the critical cases when every first minor of (552)
vanishes.

The minor obtained by omitting the last column expands into

% (fi (@), fo (), S (), ful@r)) oo i (@)s Fana (@) o fu(w)} o (562).

Here, as in the last article, we have the types

L (¥, ¥Foa,, Fia,, Fia,) =0;
II. [F\a., Foa,, Fa,| = 0;
11 {F\a,, Fya,} =0;
Iv. Fa,=0. . . . . . . . . .« . . . . (563)

corresponding to n = 4m, n =4m 4+ 1, % = 4m + 2, and n = dm + 3.

New, from the nature of arrays, though 1t does not appear directly from the form
of the expansion, these conditions are all combinatorial functions of the m points a.

I. In the first place, for the type I we have for m =1 the Jacobian of a four-
system. Next, for n =8, m = 2 we have a one-conditioned assemblage of lines of
the fourth order, or a complex of the fourth order. These are the lines which can be
destroyed by single functions of the system. Forn = 12, m = 3, (562) represents a
one-conditioned assemblage of planes, and these planes envelope a surface of the
fourth class, and each can be destroyed by a corresponding definite function of the
system. '

For n = 16, m = 4, the same equation represents a constant multiplied by the
volume of the tetrahedron (@a,aya,) to the fourth power.

II. Again, for n = 4m — 1, and more particularly‘ for m = 1, we have the critical

[fiafoafsa]l=0 . . . . . . . . . (564),

of three functions ; and for seven functions a congruency of lines common to a set of

sextic

quartic complexes ; while for eleven functions we have a two-conditioned assemblage.

of planes, or a developable of planes enveloping certain surfaces of the fourth class.
IIT. For n = 4m — 2 there is first the system of united points of f,7'f, for a pair

of functions, or { fia, foa} = 0. Secondly, a ruled surface of lines destroyed by

functions of a six-system ; and thirdly, a determinate number of planes destroyed by
VOL. CCL—A. 2T
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functions of a ten-system. For a fourteen-system it requires an invariant relation
to vanish.

IV. This case requires a single function to destroy a point; it gives the lines
destroyed by functions of a five-system (of these there are 20, compare Art. 114);
and it imposes a condition on a nine-system of functions, so that some function of the
system may be capable of destroying a plane. For a thirteen-system an invariant
relation must vanish if' a critical case arises for non-coplanar points.

I calculate the order of the Kummer surface of the quartic complex for the eight-
system to be 72, and the order and class of the congruency of the double lines to be
24. The lines of this congruency would seem to be capable of being destroyed by
two-systems of functions selected from the eight-system.

156. More particularly, if’ the line ab can be destroyed by a single function of an

n-system,
Se, fla=0, Sefib=0. . . . . . . . (565);
and the array
A (566)
Jib fob .. fub

must vanish. The number of conditions is now 9 — n, so that from a nine-system
one function can be found to destroy an arbitrary line. For n =8, we have the

3+ (frefwfa fio) (D fbfi0fs0) =0 . . . . . (567).
If the plane a, b, ¢ can be destroyed by a single function

fio foa. .. fuo
JSib fbo o fb =0 . . . . . . . (568),
| fie foe ... fuc
and this requires 13 — n conditions. For n = 12 we have the surface enveloped by
the plane (compare the last article)

3 4 (frafsfaf) (f0Sebfibf) (focfroeSnefie) =0 . . (569).

157. When a line can be destroyed point by point by functions of a two-system
selected from an n-system,

3 (@) f (a41tb)=0, or 3z, fla=0, 3z, fb+3y, fia=0, 3y, f10=0 (570);

complex

and the array '
fio fooo. . fur 00 ... 0

Fb fabo b Fa .. fua =0 . . . . (571)
0 0 ...0 fb fib...fib

must vanish, or 18 —- 2n conditions must be satisfied when the line is arbitrary. The
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Junctions must satisfy 9 — 2n conditions, as the line may be made to satisfy four.
For a four-system one condition must be satisfied for the existence of a line of this
nature, but for a five-system (compare Art. 114) a ruled surface of such lines exists,
triple chords of a curve of the tenth order.

If the line can be destroyed by functions of a three-system we have (compare
Art. 114) |
S (e, 4 ty, + %) fr(e+t)=0 . . . O . . (572),

and the resulting array is of 4 rows and 8n columns, and vanishes if 13 — 3n
conditions are satisfied. Finally, if the line is destroyed seriatim by functions of an
included four-system, 21 — 4n conditions must be satisfied. ‘

We may state that the number of conditions required to determine an N—system
included in an n-system is

N@n—-N)=N(n—N), (N+N=n). . . . . (579).

158. As regards the destruction of planes, a plane may be destroyed en bloc, as
in (568), or line by line, or point by point. In the second case,

3 (2, + sy)) f1(a + tb 4 sc - std) =0,
or 3 (x,+sy)fi(a+sc)=0, (e, +sy)f1(0+sd)y=0. . (574),

with the condition (abed) = 0.
Thus the array is

~

rfl“ N 0 ... 0
Jfie foc . fue Sra... fu
0 0 .. 0 fic...fec L
Sb fb o fd 0 L0
fid fid .. fud fib.ofib
Lo o .0 fdo.. fd

of 6 rows and 2n columns, requiring 25 —2n conditions when we disregard (abed)=0.
This is the case in which a function can destroy a hyperboloid® generator by
generator. The same number of conditions must be satisfied even when the four
points are supposed co-planar.

Finally, the case in which the pomts are destroyed seriatim gives an array of 3
columns and 6 rows, requiring 25 — 3n conditions for its vanishing.

From these articles we can clearly trace the way in which a Jacobian of four
functions may degrade, one of the most interesting being where it breaks up into

a pair of quadrics, one of which is destroyed generator by generator by a two-
system.

J

0 . . . . . (575)

* In the paper on the interpretation of a quaternion as a point symbol, the equation q=a + b+ s¢+ sid
is considered. It represents a ruled quadric and exhibits the dual generation.

2T 2
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SECTION XXIL

Tae ExreNsioNn or THE Mernop 1o HYPER-SPACE.

Art. Page
159. The equation of a flat in terms of parameters . . . . . . . . . . . . . . 324
160. The combinatorial equation of aflat . . . . . . . . . . . . . . . . . 32
161. The reciprocal of a flat . . . . .. . . . . . . . . . . . . . . . . 3%
162. The symbol of a flat . . . . . . . . . . . . . . . . . . . . . . 82
163. The symbol of the reciprocal flat . . . . . . . . . . . . . . . . . . 326

159. Exactly as in quaternions we may regard the sum of a scalar and a line
vector in space of n dimensions as the symbol of a weighted point.

If

Vil g, = L oq= Y1
Sq/bq__(l—}-OQ)Sg,OQ__. .

9=Sq+Vq-=<1+ S

q 1s the symbol of the point ¢ to which a weight S¢ is attributed.
The point represented by a sum of point symbols is the centre of mass of the
weighted points, and the weight attributable to that point is the sum of the weights.

The equation
g=a4th . . . . . . L. (577),

in which ¢ is a variable scalar, is the equation of the line ab.
The most general homographic divisions on two lines ab and e¢d are repre-

sented by
g=a+th, gq=c+ud . . . . . . . (378),

in which the weights S, Sb, Se, Sd have been suitably selected.

The equation
q=ta, + bay,+ o, . . . . . . (379)

represents the plane of the points a;, @,, a;; and more generally

qg=ta, + oy + &eo oo L, . o o o .. (580)

is the equation of the (m — 1)-flat containing the m points o, ¢y . . . @,

I believe it is more convenient to call generally a plane space of m dimensions an
m-flat, and to retain the name plane for its ordinary signification-—a two-flat.

160. In accordance with HaMILTON’S notation (‘ Elements, Art. 365) we propose
to write ‘

[ty o ooa,]|=V,.Va, Ve, ... Va,~34+V,  Va,Va, ... Va,Sa; . (581);

or briefly
I:('(]uz = vm [a'l’ll '{' vm-«] l((J/ L . (582) ;

as the symbol of the (m — 1)-flat containing the m points ay, @, . .. @,
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In order to justify this proposal, we observe that the array [a,a, . . . a,] changes
sign whenever two contiguous elements are transposed. It consequently vanishes
whenever one element is a scalar multiple of another, or whenever any group of
elements is linearly connected by scalar coeflicients; and it does not vanish under
any other conditions. It is equivalent to the most general one-row array that can
be formed from the m symbols «, because, according to the principles laid down on
the subject of quaternion arrays, the general one-row array must be of the form

{aay.oa,p =V, VaVa,... Va, +y2 4V, . Va,Va,. .. Va,Sa, . (583);

and the separable parts V,, and V,,_; of [&], afford all the information contained in
the general array with indeterminate scalars x and .
The equation of the flat containing m points @ may be written in the form

lgasty. o] =0 . . . . . . . . (584),
q = 4oy bty 4 Ly oL L,

in which ¢, ¢,.. ., are variable scalars.
161. Returning to the relation (582)

[OL:I”Z = Vm [a]m + Vm-_l I___a:lm

it is evident that V,_,[a], is equal to the product of a scalar and a set of m — 1
mutually rectangular unit vectors @, iy. . .4, in the (m — 1)-flat containing the m
points aj, dy. .., It is also apparent that V,[a], is the product of a set of m
mutually rectangular unit vectors in the m-flat containing the origin and the points
o multiplied by a scalar, We may take this product of m vector units to be
Uiy . . 0n Thus we have

as this implies (580)

[l = (o, —a) iy ..t . . . . . . . (585),

where 42, + 5, = 0, 1> = -= 1, and where x and ¥ are certain scalars. (Compare
CrirrorD’s ¢ Mathematical Papers,” p. 398.)
From this we find the symbol of a definite point

-V la] Tlly. o .t T 2. .
Ay = 1 = S =Ll ey R0 Mm-S = . )
p. + Vm [ajw YiriaTs . o iy i, 1 + y’ll (586) ;

and we verify at once that this point is a conjugate of all the points « with respect
to the quadric
S.g?=0 . . . . . . . .. (587),

because for any one of these points we have

Sa,A,, = Sa, <1 4+ V{;"ﬁ(E((]) = Sa, + y’”a"fv’gi C‘“f]'f’ = Sa, — Sa;, =0 . (588),

as appears on reference to the equation (581).
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In other words, A, is the reciprocal in the m-flat which contains the origin and
the points @ of the (m — 1)-flat which contains the points a.
For example, in three dimensions,

— 1 4 VoSa, — Va,Sa,
A, =14 YV Va, Coo oL (589)

is the. point in the plane 07,a, which is reciprocal to the line a,a,.
- 162. A comparison of the equations (581) and (585) shows that the m points

R T N R S GO B

(of which 4, % ...4%, are at infinity) may be taken as defining the (m — 1)-flat
containing the points a.
Hence, conversely, if [a], is any function satisfying the equations of condition

— . ,Y,m:} ,[,q;]m f— YJ?%:,L[QL]W
[a’:lm - Vm [a]m + Vm—l [a’]m s Vm [a/:lm, . V ° Vrm [a]m . . . (591)7

it is the symbol of an (m — 1)-flat. In fact, we can reduce this function to the form
(585) and the proposition is evident by (590).

163. The symbol of the flat reciprocal to [«), with respect to the auxiliary
quadric (587), 8. ¢* =0, wn an n-space is

[, Q. . . . . . . . . . . (592),
where Q 1s the product of “n” mutually rectangular vector units in the n-space, or

Q=1 oty - - . . . . . . . (593).
In fact, from (585) we obtain

[a]m 0= (_)m»——l (1/7'1 - w) ?’.lim+1im+2 o o e 7/'77, (7/22.3%'4 e s e ?/.m)g

— (_)%m(mnhl) (y + w&l) ’L.,,,,+1?:,,1‘+2 Ve in — [ajnﬂ——m L. (594) :
and n + 1 — m defining points of this new (n — m)-flat are (590)
Y @y, Gty Tz e oo by o o o .. (b95B).

But all these points are conjugates, with respect to the auxiliary quadric, of the
m points (590) ; and therefore the flat [@],Q is the reciprocal of the flat [« ],..
- More symbolically, we have the relations

Vm [a’]m . ‘Q' = VTn——m . I:a’]m Q ; Vm—l [a]m ° Q = - Vn—m+l . [a]m Q . (596),
and in particular for three dimensions we deduce the relations
[ab] = — (a'b); (ab)=T[a/b]. . . . . . . (597),

connecting a line and its reciprocal (compare p. 224).
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For odd spaces, if
n—m+4l=m or m==%(n-+1),

the flat and its reciprocal, [¢], and [a],Q, are of the same order. This is the case
for a line in three dimensions, and we recover from the general formulse

[ab] = — (V) ; (ab) =[dV],

relations which I have elsewhere given connecting the symbols of reciprocal lines.
We are now prepared with all the necessary machinery for the geometry of flats
and of their reciprocals.
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